

Carl-Eric Mols
Head of Open Source
Sony Mobile

Nicolás Martín-Vivaldi
SW Management Consultant
Addalot

Morten Werther
SW Management Consultant
Addalot

Magnus Ahlgren
SW Management Consultant
Addalot

Krzysztof Wnuk
Associate Professor
Blekinge Institute of Technology

Principles for Industrial Open Source

Illustrations and design: Ove Jansson, www.monpetitstudio.fr

2018, Version 1.0, review version.
Please send feedback to feedback to info@addalot.se to enable a 2.0 version.

 This work is licensed under http://creativecommons.org/licenses/by/4.0/
and attributed to the authors.

Creative Commons and the double C in a circle are registered trademarks of
Creative Commons. All product and company names used in this booklet may be trademarks
of their respective holders. Use of them are for identification purposes only and does not
imply any affiliation with or endorsement by them.

3

Lund, May 2018

Preface - Where it all comes from

How do you transform your organization when software is becoming a criti-
cal part of your business?

This question was the main driver of the European ITEA2 project Scalare,
a joint effort of industry and academia to tackle one of the key challenges in
the European industry, the digitalization of industry and society.

to guide you in reaching a desired outcome. The patterns that bridge the gap
between the current and the wanted characteristics are the transformations
the company needs to make.

1. https://itea3.org/project/scalare.html
2. The book Scaling a Software Business is open access under a CC BY 4.0 license.

Download it at http://www.springer.com/gp/book/9783319531151

 The model is unique in that it suggests a holistic method to analyze and plan
your journey. It claims that you can’t focus solely on your products or servic-
es. You also have to look closely at your processes, your organization and how
you define and decide on products. Inevitably, what goes on in these three

The main outcome of the project
is the Scaling Management Frame-
work (SMF), which was presented
in the book Scaling a Software
Business in a format tailored for
management. SMF is a model based
on collected experiences from com-
panies that have already made the
journey to give software a central
role within their organization.

Desired organizationCurrent organization

Desired processesCurrent processes

Desired productsCurrent products

Current abilities Desired abilities
Transitions

The Scalare project produced two Open Source canvases covering
standard patterns of successfully implemented transformations. The first
canvas sprung out of basic, engineering driven reasons to use and work
with Open Source. The second canvas was derived from more advanced,
business driven reasons and it required the first canvas to be more or
less fully implemented. Although the two canvases captured the high-lev-
el transformation needed to go from an almost Open Source ignorant

dimensions will change as you increase focus on software. Central to the SMF
is the canvas, a tool for organizing the analysis phase of the scaling project.
In the SMF, general and reusable solutions are called patterns and are used

organization to a full-fledged player in the industry, it still lacked both
breadth and depth – and so the idea for this booklet was spawned. Parts
of the Scaling Management Framework can be seen in that the three
dimensions Organization, Process and Product are mentioned and that
transformation solutions are called patterns, but the model for an Open
Source transformation that is presented here is completely revised and
can safely be read without any prior knowledge of the SMF.

The SMF and Open Source

4

Most innovative software is Open Source

Facing a complex business environment where systems are no longer exclu-
sively internally built, the industry has started to mix in-house, third party and
Open Source software. Why, one might ask?

“IT leaders must understand, embrace, manage, and direct
how and where Open Source will play a role in their strategic
IT roadmaps to maximize the business value and minimize
the risks associated with these technologies.”
– Gartner

The statement above was written in 2015 and it has since then been proven
over and over again. New technology adoption and penetration is considera-
bly accelerated thanks to Open Source.

Open Source software can provide significant benefits to an organization.
Many of today’s fast-growing companies like Amazon, Google and Netflix as
well as traditional industrials like Bosch, Porsche and Philips, have embraced
Open Source as part of their business strategy.

In contrast to locking in their IP assets, they are making vital software assets
public and free for anyone to see and use. How do they (dare to) do it?

“If Software Is Eating the World then Open Source Will
Chew It Up (And Swallow)”
– Adrian Bridgewater, Forbes

Good news: it doesn’t have to be an either-or decision. It’s possible to simul-
taneously support Open Source while keeping parts of the code proprietary.

This booklet presents Industrial Open Source, industry proven and standard-
ized patterns for how to manage an Open Source transformation. Use it as a
guide for an Open Source journey. In particular you will learn:

• How to create more business – through new and alternative revenue
streams.

• Why contribution is vital – to secure that value is added to your products

• Why compliance is a necessity – as your ticket to participate.
Open Source is the key to increasing development speed and lowering cost
while boosting innovation. It’s as easy as that. So, the next obvious question
is: how? Well, this is exactly where Industrial Open Source comes in.

Have a safe journey!

5

Open Source is everywhere

The Open Source movement is several decades old, but it wasn’t until the
turn of the millennium that major companies entered the game. Apple is
basing all their devices on Open Source since the release of OS X in 2001.
The Linux OS, one of the most widely collaborative projects in the history of
the world, is powering a substantial part of the computing power in the world
- like web servers, mobile devices and supercomputers. Major web companies
such as Google and Amazon are extensively leveraging Open Source dynam-
ics. Data from a 2016 Black Duck audit of 1000 commercial applications
shows that Open Source components were found in 96% of the applications.

The huge toolbox of accessible technologies released as Open Source has
become an enabler in a diversity of industries. Open Source is present in all
domains, providing an enormous ecosystem of innovators that are sharing
knowledge and creating new resources and opportunities for everybody to
benefit from. This is the beauty of Open Source.

There are many reasons for why Open Source software has become so popu-
lar, like:

• Awareness of and access to global development.

• Open Source standards and practices have matured considerably.

• An increased demand for reduced development cost and shorter lead-
times.

• Merge of domains, for instance connectivity technology with previously
closed applications.

• The snowball effect: Since the big players are doing it, everyone else wants
to get involved.

It could thus be argued that Open Source software is a central part of the
digital transformation that industries around the world currently undergo.

Today, a majority of the fastest-growing companies base their offerings on
Open Source. It is believed that in the long run, it is going to be impossible to
succeed as a technology vendor without deeply embracing Open Source.

63 %

57 %

53 %
51 %

49 % 48 %
46 %

27 % 26 %

13 % 12 %
10 %

Con
ten

t

man
ag

em
en

t

Mob
ile

Sec
uri

ty

Coll
ab

ora
tio

n

Netw
ork

man
ag

em
en

t

Soc
ial

 m
ed

ia

3D
 pr

int
ing

Ana
lyt

ics
 an

d

bu
sin

es
s m

an
ag

em
en

t

Dron
es

Gam
ing

ERP
Clou

d

Virtu
ali

za
tio

n

Open Source
across

technology

2,000,000

1,800,000

1,600,000

1,400,000

1,200,000

1,000,000

800,000

600,000

400,000

200,000

0

2007 2009 2011 2013 2015

Open Source Projects

6

Open Source and copyright

A subject that is traditionally a concern for many companies is the legal
matter of software rights. This is especially true when it comes to how to
safely combine Open Source software and proprietary code. Generally, Open
Source software comes with permission to use, copy and distribute, either as
is or with modifications, and may be offered either free or with a charge. Any
modifications may have to be made publicly available.

The Open Source Initiative has to date approved over 80 licenses
(http://www.opensource.org/licenses/). These are either permissive
or so-called copyleft licenses.

This freedom comes at a fair price. All derivative source code has to be made
publicly available and must be provided under their original licenses. It is, in
other words, important to understand what derivative work means and how
to combine proprietary source code with Open Source code.

© The original creator owns the copyright and
provides the precise terms in the license that
follows the software. Without the license, the
software automatically falls under general copy-
right laws, prohibiting us from copying, adapt-
ing and distributing it. With the license, we are
granted certain rights to use the software.

The permissive licenses, also known as academic licenses, include BSD
(Berkeley Software Distribution), MIT (Massachusetts Institute of Technolo-
gy) and Apache. These grant the majority of rights to the licensee and allow
for unlimited redistribution for any purpose as long as its copyright notice
and the licensee’s disclaimers of warranty are maintained. Derivative work,
adaptations we make, can be distributed freely without restrictions. ©

All copyleft licenses derive from the original
GNU General Public License (GPL) under which
the free operating system GNU (including the
Linux kernel) is licensed. The variants of this li-
cense are plentiful and span from giving away all
rights to just a few rights. The general idea for all
variants is to make software freely available.

Licenses

GNU Affero General Public License v3 or later
Mozilla Public License (MPL) 1.1

Code Project Open License 1.02
Simplified BSD License (BSD)

Microsoft Public License
Eclipse Public License (EPL)

GNU Lesser General Public License (LGPL) 3.0

GNU Lesser General Public License (LGPL) 2.1
Artistic License (Perl)

ISC License
BSD License 2.0 (3-clause, New or Revised) License

GNU General Public License (GPL) 3.0
Apache License 2.0

MIT License

GNU General Public License (GPL) 2.0

Sun GPL With Classpath Exception v2.0

Original graph by Bluck Duck

7

Open Source potential

The potential and capability of Open Source software is unquestionable.
Open Source runs operating systems, apps, databases, cloud computing, big
data, and much more.

The benefits are clear: the industry-standard cost per line of code (LoC)
ranges from $10 to $20, and the average component used by a Global 2000
company contains 50,000 lines of code. Therefore, the use of Open Source
could in theory save from $500,000 to $1 million per project.

The cost advantage of Open Source may initially have been the main driv-
er of its adoption, but is not the key benefit. It has proven to outperform
proprietary software also on quality, security, reliability, and customization.
The full benefits of Open Source are only realized when an organization has
active control over its use. There can indeed be some serious problems with
Open Source, but most often the potential gains outweigh the risks, which
is why Open Source software has earned such a dominating position in the
software landscape of today.

Benefits

Cost – Sharing the development and maintenance effort as is done in an
Open Source community, substantially reduces the overall operating expenses.

Speed – Open Source solutions that are available off-the-shelf and are evolv-
ing at high speed can considerably reduce the time for an offering to reach
the market.

Innovation – Companies that use Open Source get access to novel and
innovative software, as well as enjoying participation in communities were this
innovation occurs.

Business competition – As mentioned: cost, speed and innovation. But in
addition, active involvement in Open Source communities can drive business
and competitiveness through servitization and ecosystems.

Challenges

Legal – Ignoring license compliance can result in copyright infringement,
stop shipment orders, and immediately impact revenue streams.

Security – As with any software, managing application security is essential.
Thus, Open Source software needs to be regularly monitored and updated to
decrease the risk of security vulnerabilities.

Operational – Proper compliance is fundamental and requires the organiza-
tion to train personnel and set up governance. On the next level, the oper-
ational barrier is about how to become a more active participant in Open
Source communities.

Bad publicity –Not meeting Open Source compliance requirements may
additionally result in bad publicity and damage the company reputation.

8

Industrial Open Source

This booklet targets a new wave of Open Source development being led by
industrials and companies that are growing with Open Source at the heart of
their business. These companies are using Open Source to build commercial
products. They are creating new business models allowing them to succeed
in emerging business domains using technologies such as AI, Cloud and IoT.
Consequently, today’s industry faces a complex environment where systems
are no longer primarily built on proprietary development, but on a mix of
in-house, third party and Open Source. Software companies are moving from
development to integration.

In the Open Source 360° Survey conducted by Black Duck in 2017, 60% of
respondents said their organizations’ use of Open Source increased in the last
year, but an equally large number also indicated that they don’t have a formal
(policy and governance) process or are unaware of one in their organizations.

To manage risks and challenges and to help avoid unnecessary experimen-
tation, organizations must apply an industrial approach to the use of Open
Source as part of their software strategy, enforcing standardized patterns.

inhouse

3rd party

Open Source

9

A journey with several steps

Successful introduction of Industrial Open Source is not a quick fix, it is a
journey with several steps. This journey is divided into five levels of Open
Source maturity, as shown in the diagram. A maturity level characterizes a
company’s Open Source capabilities. The levels are not distinct but overlap-
ping, and provide a generalized understanding of the company’s behavior.

V
a

lu
e

 f
o

r
th

e
 c

o
m

p
a

n
y

Effort for the company

How can we
change market

logic and disrupt
the market?

1. Accidental
Discovery and
awareness

2. Repetitive
Policy, processes

and training

3. Directed
Active and

contributing

4. Collaborative
Co-creating

business value

5. Prevail
Leadership through

new initiatives
BUSIN

ES
S

 D
R

IV
EN

ENGINEERING DRIVEN

How can I
develop faster
and cheaper?

How can we
use Open Source
in our business

models?

How can we
secure product value

while innovating?
How can we

minimize legal risks
while reducing
maintenance?

Level 1 – Accidental

At the first level Open Source is an “under the radar” activity. Management
position is often unclear or there might even be a policy against Open Source,
but developers still use it based on own belief that shortcuts can be taken so
that development will be faster and cheaper.

Level 2 – Repetitive

When management has realized the potential of Open Source but also the
risks with not being Open Source compliant they push for a controlled repet-
itive framework - including policy and procedures. At this level Open Source
is primarily used in an intake format focusing on cost and speed with limited
contributions, mainly bug fixes that are made to reduce maintenance.

Level 3 – Directed

The value of collaborating with partners and competitors in the development
process is understood and the company begins to champion specific projects
and an Open Source approach in general. Contributions are done in line with
an Open Source based product strategy and own industry experts are fos-
tered. At this level, focus is on efficient and innovative product development
but Open Source is still mainly an interest of the engineering department.

Level 4 – Collaborative

The understanding and use of Open Source now spreads from the engineer-
ing domain to encompass other domains like sales and business development.
Alternative business models are used to capitalize on Open Source, and
through ecosystems new revenue streams are exploited. Services complement
the core product. At this level the focus is on business opportunities that can
be harvested with the use of Open Source.

Level 5 – Prevail

The company has developed a full-fledged Open Source company culture, with
full strategic support from the management to the extent that the company is able
to disrupt entire markets by changing the market logic.

10

At the first level Open Source is handled under the radar by the devel-
opers. Management has not understood or are even in opposition to
Open Source but developers still use it based on own belief that short-
cuts can be taken so that development will be faster and cheaper.

Even if the work with Open Source preferably ought to be sanctioned by
management it often starts as individual decision by developers who are
aware of Open Source software components and use them for efficiency
reasons, not to re-invent the wheel.

Another starting point is that Open Source has been included through inte-
gration of third party solutions.

Open Source software is particularly appealing for development organizations
with a large heap of legacy and proprietary code that hasn’t been maintained
and refactored for a long time.

So, the engineers decide to use Open Source as a way to take shortcuts when
solving development challenges, they have at hand. This is very common, but
of course not the preferred way forward. Quite likely, they don’t have formal
approval from management.

The reason they don’t include management and keep doing skunk work may
vary. Management might use the not-invented-here argument, but more often
there is a distrust of Open Source code. Until only a few years ago, Open
Source was considered by most as a hacker’s phenomenon and a headache
for the Legal department. Neither are they likely to understand how to truly
leverage from Open Source as long as they only consider it as being “free as
in gratis” code. Both development and management need to learn more.

Level 1
Accidental

At the second level Open Source becomes a topic on the development
management agenda. To establish control, Open Source governance!
Main drivers to reach level 2 are to increase the speed and to reduce the
cost of development and at the same time fulfill the license obligations.

 At level two management has understood the benefits (i.e. reduced cost,
increased speed and increased innovation) of Open Source, and that these
benefits are greater that the compliance risks (operational, legal and security).
Together with the legal department, management has derived a directive or
policy defining a common direction for Open Source. It describes the why,
how and when Open Source software should be used.

Open Source governance processes and tools are established and followed.
Three fundamental processes are essential; an Intake process for approving
Open Source code that development intends to use, a Compliance process
for ensuring that code follows the terms and conditions of Open Source li-
censes, and a Contribution process for the approval of code to be released to
an Open Source community. At level two the focus is on using existing Open
Source, contributions are mainly bug-fixes. A code scanning tools is almost a
necessity to ensure governance control.

Successful Open Source governance require cooperation across many func-
tions within a company, like legal, engineering and management. To ensure
governance, organizational support and to drive improvements of the Open
Source capabilities (Open Source maturity), an Open Source Board forum
is established. There, all the involved disciplines and functions can meet. A
coordinating role, often called Open Source Officer, is introduced.

Level 2
Repetetive

11

Open Source is a key ingredient to product development at the third
maturity level. Focus is on creating product value, by having a clear
view of how to make the most out of Open Source in development

At level three the company has realized the value of contributions (reduction
of maintenance cost, reduced time to market, and increased influence on
communities)

The goal is not to contribute everything, but to base it on a Make-Buy-Share
strategy. This way the company can focus on the differentiating components
while using sourcing or Open Source software for the other parts of the
system. This strategy, will increase innovation across the product through
better-focused own development and joint development of qualifier and
commodity components. All Open Source software require a Contribution
strategy that will ensure that developers don’t waste time and effort on contri-
butions that are not in alignment with the strategic ambitions and thus are not
likely to be approved.

At level 2 the company has also established Open Source code management,
which means awareness of what Open Source is included in the code base
and in which components. Efficient Open Source usage and code manage-
ment require a modularized code base to facilitate integration of open Source
components and maintain compliance.

A challenge to fully using Open Source is the reluctance to losing control as a
result of including Open Source components into the product. To get to level
2, start with motivation and control. Management needs to show commit-
ment by formulating a clear direction. Control starts with defining the current
baseline of existing Open Source in the product supported by a process for
compliance including a scanning tool. Another key is to introduce the new
organizational forum and roles – to drive the Open Source journey.

Level 3
Directed

Since parts of the product now are based on Open Source, the company will
no longer have full control of the roadmap for its product. Through more
active engagement in communities, the company can regain control to some
extent by influencing development. Still, the product strategy of the compa-
ny needs to be transformed into a collaborative model better adapted to the
distributed nature of working with Open Source.

In order to influence communities, the company needs to put effort in
fostering industry experts. This is done by building on Open Source culture,
highlighting contributions and providing both individual support as well as
driving internal communities.

Many software-intensive companies own software assets that are of general
interest and high potential but do not contribute to the product differentia-
tion. These assets are suitable to create Open Source communities around,
with the objective to harvest the advantages of community involvement e.g.
increased innovation, decreased cost and time to market.

To get to level 3, focus on preaching the value of contributions and derive
the Make-Buy-Share strategy. The key is to get involvement from Product
Management, who also often has the belief that the proprietary codebase
constitutes huge value and are concerned that they will lose control, which
further restricts contributions.

Level 4
Collaborative

At the fourth level, Open Source is not only an enabler of engineering
goals, but is used to create business gains. This is achieved by col-
laboration in ecosystems based on Open Source, including partners,
customers and end users.

Now, Open Source is no longer only an engineering discipline, but a game
changer to the business. The company has realized that Open Source adds
additional business models that enable:

12

• Accelerated growth of business – to expand the market in terms of a
broadened offering and to grow higher in the value chain.

• Disruption of market entry barriers – to gain access to a market with an
open offering, while raising the bar for proprietary and non-collaborative
businesses.

• Opening for alternative business opportunities – to benefit from alterna-
tive revenue streams like ecosystems.

There are three alternative business models, the extended business model
(when alternative revenue is collected from something related to the core
offering, e.g. a service fee), the indirect business model (when revenue is
mainly collected through a device or a hardware offering) and the asymmetric
business model (when revenue is collected from a source unrelated from the
core offering, like data or ads).

The company is able to identify opportunities, create and orchestrate an
Open Source based ecosystem. An ecosystem can be described as a com-
munity of communities and require a collaborative business model with for
example revenue sharing. Ecosystems also require an Open Sources based
platform where the Ecosystem players can add services and contribute to the
platform. The core product is now a part in a service offering.

To support this, the company is now based on self-managed teams supported
by a visionary leadership and is much more suited for operating in a com-
plex, collaborative and dynamic environment as the Open Source world. This
type of company will fully benefit from an agility to identify and harvest new
business opportunities and using Open Source communities and ecosystems
to realize them.

At this stage the company is well versed on the engineering and legal aspects
of Open Source. The company’s knowledge level on Open Source is satisfy-
ing to the extent that directives and policies are relaxed and some automation
of the governance processes has been introduced.

To reach level 4, Open Source needs to grow outside engineering. Manage-
ment will have to explore radically different market logics. They must ques-
tion what the core offering of the company is and consider how alternative
revenue streams can be created.

At the fifth level the company has developed a full-fledged Open
Source culture with complete strategic support from top management,
to the extent that it is able to disrupt entire markets.

Companies at this level design products to be heavily based on Open Source,
thus obtaining a competitive advantage by exploiting the full innovative
strength of ecosystems. They are launching major technical innovations to
be shared by Open Source communities, thus setting de-facto standards and
becoming known as an authority.

Open Source practices are mastered to the extent that these companies are
able to develop Open Source communities to complete ecosystems. Level 5
companies are seen as the prime provider of Open Source code, tools and
project hosting in their industry domain, thus able to orchestrate the develop-
ment of industry wide initiatives (an example being Google with Android).

Open Source has become a core competence and most of the staff are skilled
in this area. A few even receive worldwide acclaim as prominent names within
Open Source.

By relying on Open Source, the company has the power to disrupt and re-
define the market logic and how value in the market is created and captured.
Through Open Source initiatives it can control its industry and take the lead,
as well as create entirely new value propositions.

Management and staff live and breathe Open Source. Open Source is en-
trenched through the company walls and communities outside the company
recognize the company as being in the forefront and gurus of Open Source.
Management does not only encourage Open Source projects and initiatives
but requires employees to drive Open Source for the benefit of both the
company and the ecosystem.

Level 5
Prevail

13

Patterns are sorted in three different types: organization, product and process.

The organization type includes aspects needed to successfully drive Open
Source: Which roles and functions to establish. What culture and organization
structures are needed to make it happen and how to include Open Source in
company products and business strategies.

The process type covers the activities needed in Industrial Open Source.
Activities include Open Source governance (like compliance, intake and con-
tributions), product management (like make-buy-share) and how to create and
direct communities and eco-systems.

The product type focuses on products and services, how to structure these
(architecture), and how to make the code base available. Patterns are e.g. about
understanding what Open Source components the company has in its system
and how to establish modularized reusable platforms with added services.

Most patterns have a dependency to other patterns. Some patterns are basic
pieces that need to be put in place early like “Control Compliance”. Others are
more advanced, like “Open Source Driven Platform Innovation” that build on
the basic ones. Some patterns are of a general nature; practices that any devel-
opment organization would benefit from, (like “Code Review” or “Frequent
Releases”), while others are unique to Open Source. The order in which the
patterns are implemented must however be based on the situation (strengths
and weaknesses, etc.) in your organization. They are all essential on your trans-
formation journey to successfully incorporate Open Source.

An overview of all patterns is presented on the next page. The patterns are
organized according to the three types and whether they are primarily engi-
neering driven ones (lighter blue shade) or primarily business oriented driven
ones (darker blue shade).

To get a rough understanding of how the patterns relate to the different Open
Source maturity levels, see the picture on page 20. However, it is important to
point out that the order should not be seen as a recommendation for how to
implement them.

Patterns – the pieces of the puzzle

Our definition of a pattern is adapted from the “Software design pattern”
definition, that is, a pattern is a general, reusable solution to a commonly oc-
curring problem within a given context. It is not a complete solution that can
be transformed directly into an organization. It is a description or template for
how to solve a problem that can be used in many different situations.

Industrial Open Source contains 27 different patterns that are carefully select-
ed and crafted to bridge the gap between the current and the wanted charac-
teristics of the transformation the company needs to make. Patterns can be
seen as the pieces of the puzzle in getting a complete picture of your Open
Source transformation journey.

Process

Product

Organization

14

q
 C

rea
te

an
d g

ov
er

n
ec

os
ys

tem
s

q Crowd-base
d req

uirem
ents

q
 In

du
str

y-w
ide

 co
llab

orat
ions

q
 O

wn
 se

rv
ice

 o
ffe

rin
gs

q
 O

pe
n

So
ur

ce
 d

riv
en

 p
ra

tf
or

m
 in

no
va

tio
n

q
 C

re
at

in
g

a
so

ft
w

ar
e

pl
at

fo
rm

q
 S

er
vi

ce
-b

as
ed

 b
us

in
es

s

q Collab
orativ

e product s
trat

egy

q Self-managed organization

q Directed by business aspects

q Authority
 in Open Source

q
 C

on
tro

l in
tak

e

q Contro
l co

mplian
ce

q
 Contro

l co
ntrib

utio
n

q
 M

ak
e-B

uy
-S

ha
re

q
 Code

 re
vie

w
q

 Freq
ue

nt
rel

ea
ses

q
 C

od
e

m
an

ag
em

en
t

q
 M

od
ul

ar
iza

tio
n

an
d

co
nt

ro
l A

PI
s

q Grow industry experts

q Collab
orati

on with Legal &
 IPR

q Open Source board

q Open Source officer

q Open Source community culture

q Open Source developer program

q Policies, ro
les an

d authoritie
s

O
rg

a
n

iz
a

ti
o

n
 p

a
tt

e
rn

s

Product patterns

Engineering driven patterns Business driven patterns

Process patterns

OpenSource
Excellence

q Crea
te a

nd direc
t co

mmunitie
s

15

Taking the steps

All improvement initiatives require Change Management. Change Management
is the discipline that guides how we prepare, equip and support individuals to
successfully adopt change to drive organizational success. An Open Source
journey will encounter many challenges that require change management.

General recommendations for Change Management

Use business goals as drivers and ensure that improvement activities are connect-
ed to theses drivers. For example, an Open Source Program might have goals on
reduced lead-time, reduced cost and improved innovation and these improvement
objectives must have hooks on the business goal level.

Involve key practitioners when establishing the Open Source processes. Don’t leave
it only to pure process expertise or to external people not aware of existing best
practices. A mix is often the best, internal expertise aware of current capabilities
together with external experts providing industry and change management experi-
ence.

Drive improvements in a lean way, i.e. reduce the amount of parallel work. Fo-
cus on a few improvements at a time and get them in place, since spreading the
resources and efforts too thin will risk not finishing anything. In an Open Source
Program context, get the Open Source Board in place early, since it can serve as the
engine for the improvement activities.

Don’t aim for the advanced patterns before you have the basics in place. You must
walk before you can run. For example, focus on getting a Make-Buy-Share strategy
in place before investing in building Ecosystems. See the pattern overview for a
rough definition of how patterns relate to the different Open Source maturity levels.

Remember the human side. Involve the people. Change starts with people and then
continues throughout the organization. The pattern “Org-5 Open Source Commu-
nity Culture” is important for developer acceptance and buy-in.

Introducing Industrial Open Source with all its patterns is a true change
management challenge. To succeed, an Open Source Program with dedicated
resources supported by executive management is required.

16

Understand thebenefits
of Open Source code

The first step on the way to engage in Open
Source is often driven by developers with the
belief that this makes development faster and
cheaper. This usually happens without manage-
ment awareness or consent. The first challenge
is to realize that your software system is likely
to contain Open Source software (put there
by your developers and through integration
of third party solutions) and now it should be
driven out of the shadows – by appreciating
and clarifying its benefits.

Acknowledge the
compliance obligations

The picture of the benefits of Open Source
needs to be complemented with an under-
standing of how to manage Open Source
compliance. This leads the organization to
introduce a governance, implying more struc-
ture and control. It’s important to establish
for all involved stakeholders that this is the
“entry ticket” to proper Open Source usage.
A challenge to fully using Open Source is
the reluctance to losing control as a result of
including Open Source components into the
product. To enter level 2, management must
not only accept Open Source, but also approve
and commit to it.

Realize the
value of contributions

Many organizations get stuck on level two.
Using Open Source saves time and effort, but
the contribution process is seen as complicated
and costly and the value of it is not under-
stood. Often there is also a belief that the pro-
prietary codebase constitutes huge value and
product owners are concerned that they will
lose control, which further restricts contribu-
tions. Main change management challenge is to
establish an understanding of the importance
of contributions and participation in Open
Source communities (Cost reduction, Time to
market and Innovation). See the Anti-Pattern
“Anti-1 Shun the “Use, but not contribute”
trap” for more details.

Starting on level 1

Going to level 2

Going to level 3

17

Practice makes perfect

By doing level 4 repeatedly your learnings in-
crease, and your impact will be greater. The
challenge is to maintain the belief that Open
Source and Ecosystems is a business enabler
and secure that the new business models
are successful by constantly monitoring and
changing with the market! At some point
you might even have disrupted the market-
place. Then – you have reached the end of
this transformational journey.

Congratulations!

Not only for Engineering

Open Source is often viewed as an engineering
concept. Going to level 4 requires the whole
organization, but primarily sales & marketing
and business development, to understand how
Open Source can be used to create novel busi-
ness opportunities. By controlling and direct-
ing an Open Source community, you commod-
itize and standardize technology while keeping
the advantage of timing, cost and innovation
compared to competition. Through an eco-
system new revenue streams can be exploited.
The main challenge is to create an organization
where business decisions and engineering is
done in close cooperation – preferably in the
same team!

Going to level 4

Going to level 5

18

19

Industrial Open Source Patterns

After gaining a general understanding of the benefits of introducing Open
Source in your company, it is the time to get hands-on with the different patterns.

Process

Product

Organization

All patterns contain a brief description including the problem they are solving
along with implementation details and benefits, and a reference to further
reading. Note that there is no recommendation to read the patterns in a
specific order. It is better to get an idea of your current maturity and how
the related patterns are fulfilled. Most companies, no matter what previous
experience they have from Open Source, are likely to lack some parts of the
basic level 2 patterns. It is strongly advised to increase Open Source maturity
in steps – see “Taking the steps”.

All patterns are more or less connected and applicable throughout the Open
Source journey. A rough indication of how patterns relate to the different
Open Source levels is provided on the next page. It gives a general suggestion
of which patterns to implement to get to a certain level on the maturity scale.

Organizational patterns, which
are dealing with organizational
matters such as structures, roles,
competences and strategies

Process patterns, which are
focusing on activities to keep in
control, like intake, compliance,
and contribution

Product patterns, which are
involving aspects related to the
software and architecture of the
products and services

Anti-patterns are common
pitfalls that companies may get
stuck in at a certain point

201. Accidental
Discovery and
awareness

2. Repetitive
Policy, processes
and training

3. Directed
Active and
contributing

4. Collaborative
Co-creating
business value

5. Prevailed
Leadership through
new initiatives

Creating a
software
platform

OS driven
platform

innovation

Own
service

offerings

Service-based
business

Industry-wide
collaborations

Grow
industry
experts

Open Source
board

Open Source
officer

Collaborative
product
strategy

Code
management

PRD-2

Modularization
and

control APIs

PRD-1

PRD-3

PRD-5

PRD-4

PRD-6

Create
and direct

communities

PRC-7

Make-Buy-Share

PRC-5

Control
intake

PRC-2

Control
compliance

PRC-1

Control
contribution

PRC-4

Code
review

PRC-3

Frequent
releases

PRC-6

PRC-8

Crowd-based
requirements

PRC-9

Create and
govern

ecosystems

PRC-10

Open Source
Community

culture

ORG-5

ORG-6

Policies,
roles and

authorities

ORG-2

Cooperation
with

legal & IPR

ORG-1

ORG-4

ORG-3

Directed by
business apects

ORG-10

Authority
in

Open Source

ORG-11

Open Source
Developer
program

ORG-7

Self-managed
organization

ORG-9

ORG-8

20

21

Organization
Patterns

22

To manage both the day-to-day operations of Open Source and
the longer term strategic issues, all the involved stakeholders
need to get a better understanding of legal aspects (like IPR
matters, Open Source licenses and compliance). As a starting
point, this means finding a way to cooperate between manage-
ment, software and Legal and IPR.

What it covers

Legal aspects are an important part of understanding how to properly imple-
ment Open Source in a company. Several problems can arise if you do not
follow legal terms and conditions (e.g. see pattern Proc-1 Control Compli-
ance), but equally there may be lost opportunities from being overly cautious
– maybe to the extent of refraining from using Open Source code.

Management of Open Source covers a broad palette of tasks that to some
extent have a need for a legal advice:

• Processes: How to manage intake, compliance and contributions so that
community licenses and company IP is taken into account.

• Policies: Directing the company around Open Source and the different
processes connected with it, based not least on a sound understanding of
legal facets.

• Open Source strategies: Covering the long term objectives for Open
Source and what is required in terms of organizational and business devel-
opment to reach them which often lead to questions on IPR.

• Knowledge base: When questions arise around legal aspects of Open
Source, there needs to be someone or somewhere to turn to for support.

To accomplish the above whilst respecting legal aspects, the main stakehold-
ers in the company – management and software – need to involve Legal and
IPR. In its simplest form this can be done by setting up regular meetings and
assigning legal roles, like a counselor, to support the development company
with easy access to legal advice. A key ingredient in this collaboration is the
Open Source Board (see pattern Org-4) and the Open Source Officer (see
pattern Org-3).

Why it is important

To get proper traction of Open Source adaptation within a company, there is
a need to swiftly set policies and processes in place, and to correctly weigh in
the legal risks that are involved in dealing with them (for instance compliance
and contribution). This requires cooperation between stakeholders that do
not normally have an arena for exchange – mainly management and software
versus Legal and IPR. To accomplish successful Open Source operations,
this cooperation needs to be started early on and thereafter needs to be
maintained over time (for instance when considering when and how to start
communities).

Several problems can arise if you do not follow legal terms
and conditions, but equally there may be lost opportunities
from being overly cautious.

Collaboration with
Legal and IPR

Org-1

!

” “

!

23

Considerations

As indicated above, it is important to start early by setting the rules for how
the company should be working with Open Source, which means that it is
prioritized to set up:

• Policies for Open Source.

• Processes:

 � Starting with intake and compliance where licenses are important.

 � Later, contribution where IPR questions are in focus.

To get policies and processes in place, the collaboration with Legal and IPR
is absolutely essential. In order to make the cooperation efficient, ensure that
exepectations, roles and responsibilities are defined from the very start (see
Pattern Org-2 Policies, Roles and Authorities). Initially cooperation needs to
be tight, but as the organization matures and things are settled, less frequent
communication will be needed.

For a small company it may not be possible to hire full-time legal support, but
then it should be considered to at least part time acquire this service from an
external law firm. Not only if legal counsel is a scarce resource in the compa-
ny, but especially then, there should also be legal training given to individuals
at the center of Open Source management.

Rather than just setting up a semi-formal cooperation between development
and Legal and IPR, it is recommended to move as early as possible to es-
tablishing the Open Source Board and the Open Source Officer role. This
requires a clear definition of cross-functional cooperation points that are
mentioned in this pattern.

Further reading

• I. Haddad “Free and Open Source Software Compliance The Basics You
Must Know” http://www.ibrahimatlinux.com/
uploads/6/3/9/7/6397792/0.pdf

Related patterns

• Org-2 Policies, Roleas and Authorities

• Org-3 Open Source Officer

• Org-4 Open Source Board

• Proc-1 Control Compliance

• Proc-4 Control Contribution

• Org-1 Cooperation with Legal & IPR

? “

24

In order to succeed with Open Source, a company must provide
a common direction including the high level answers to why, who
and how. This should be packaged in an Open Source Policy that
will govern the execution of the Open Source activities.

What it covers

The Policies, Roles and Authorities pattern is about having the necessary
organizational fundaments in place to govern execution of the Open Source
practices.

Policies are about having an organizational directive on the role of Open
Source in the company and how Open Source will be governed. They should
clearly state:

• Why Open Source is part of the company’s software strategy.

• What is the role of Open Source and what is the intended direction.

• The key processes that outline how the company should work with Open
Source:

 � Intake, how Open Source software should be taken in.

 � Compliance, how license compliance should be ensured.

 � Contribution, how contributions should be controlled.

• The necessary roles to execute Open Source-related activities and how
Open Source activities will be governed.

There is a set of generic roles that are needed in one way or another. Since
the role describes the position and expected behavior, one person may have
more than one role and there may also be many people having the same role
in the company:

• Open Source Officer: The main objectives of an Open Source Officer
are to be the center for Open Source activities and to drive the compa-
ny’s ability in Open Source-based development and business, i.e. its Open
Source maturity. This role is described in a separate pattern: Org-3 Open
Source Officer.

• Business Manager. The Business Manager is a generic role representing
any line manager having the authority to decide on matters regarding Open
Source on behalf of the company. The company’s structure and authoriza-
tion rules will govern the exact mandate of business managers at different
levels.

• Intake officer: The Intake Officer role is assigned by the Business Man-
ager to draft or approve intake evaluations. The intake process is further
described in a separate pattern: Proc-2 Control Intake.

• Compliance officer: The responsibility of the compliance officer (also
appointed by the Business Manager) is to ensure that the company adheres
to Open Source licenses throughout the software life cycle. This compli-
ance process is further described in a separate pattern: Proc-1 Control
Compliance.

Without having a leading star it will hardly be possible-
to gain momentum in the Open Source journey. This is
directed through an Open Source policy.

Policies, Roles
and Authorities

Org-2

!

” “

25

Considerations

Since this pattern is about implementing the organizational fundament for the
Open Source strategy, it requires management commitment and buy-in. By
being serious and making the necessary investments, mistakes will be avoided
and successes will be granted.

The most important thing is to get the right people involved and engaged. In
short, sufficient representation from development, Legal & IPR and manage-
ment needs to be ensured. Since Open Source is an area with specific charac-
teristics, the people need to be interested and dedicated to engaging them-
selves. If they believe in the cause, they will have the necessary self-drive.
These people are well suited to write the policy and to form the fundament in
the Open Source Board.

Communication and adoption are key. To get a Policy known and living it is
instrumental to spread the word and carefully manage the process of imple-
menting what is written in the policy.

Furthermore the policy needs to be updated throughout the Open Source
journey. Initially at the lower levels of maturity, the focus will be more on
control. Moving up the maturity ladder, focus will change to more business
oriented practices. The policy will need to be to continuously adjusted to
reflect these changes.

Bear in mind to keep the investment aligned with the scope of the Open
Source strategy. If Open Source is only included in a limited part of the
software, the Open Source organization should be sized accordingly. Howev-
er, if Open Source is an integral part of the software strategy, the necessary
involvement from affected parties at all levels must be ensured.

• Contribution officer: assigned by the Business Manager, who is main
responsible for the drafting of Contribution Proposal. The Contribution
process is further described in a separate pattern: Proc-4 Control Contri-
bution.

• Legal subject matter expert: Legal competence is necessary to act as
subject matter expert regarding Open Source licenses’ terms and conditions.
This is further detailed in a separate pattern: Org-4 Open Source Board.

• Intellectual Property Rights (IPR) subject matter expert: IPR expertise
in needed to provide guidance in matter concerning property rights such
as copyright, patents and trademark. This is further detailed in a separate
pattern: Org-4 Open Source Board.

• Open Source Board: The role of the Open Source Board is to main-
tain the open source policies, govern the execution of the Open Source
practices and provide guidance and decision on matters concerning Open
Source. The organization must ensure that the necessary roles and people
are represented including management, Legal & IPR and development.
This Board is described in a separate pattern: Org-4 Open Source Board.

Why it is important

Without having a leading star it will hardly be possible to gain momentum
in the Open Source journey. This is directed through an Open Source policy
that sets a collective direction ensuring that necessary activities are executed,
and that the appropriate governance is in place.

Creating a common consciousness about why, how and who, gets even more
important with increased maturity, since an Open Source oriented company
aims for decentralized structures (see pattern Org-9 Self-managed Organi-
zation). Without a clear directive there is a risk of teams driving in different
directions and business benefits get lost.

!

?

26

Further reading

• B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg. “Who is an open
source software developer?.” Communications of the ACM, February
2002, pp. 67-72.

• https://www.linuxfoundation.org/resources/open-source-guides/
starting-open-source-project/

Related patterns

• Org-3 Open Source Officer

• Proc-2 Control Intake

• Proc-1 Control Compliance

• Proc-4 Control Contribution

• Org-1 Cooperation with Legal & IPR

• Org-9 Self-managed Organization

“

27

Proper Open Source compliance and operations require coopera-
tion across many disciplines within a company, like legal, engi-
neering and management. To ensure governance, organizational
support and to drive improvements of the Open Source capabili-
ties, the coordinating role of an Open Source Officer is needed.

What it covers

Due to the multi-disciplinary nature of Open Source operations within a
company, the Open Source Officer needs to have a cross-functional perspec-
tive, acting at the center of activities related to governance and organizational
support and development – to secure alignment, progress, timeliness and
compliance. This is done through responsibility for, or involvement in, the
following areas:

Coordination between disciplines: Acting as an interpreter and discussion
facilitator in matters related to Open Source between for instance legal and
development engineers, between development management and sourcing or
more generally between all involved domains and functions.

Training: Ensuring that relevant training is available for the staff. This may in-
clude participation in creating training material. Training needs must regularly
be analyzed and assessed.

Open Source artifacts: Making sure that directives, guidelines, templates and
documentation are provided and shared. This also covers processes and the
need to evolve them over time.

Open Source Board: The Open Source Officer is an active participant of the
Open Source Board (described in pattern Org-4) and partakes in the decision
making there.

Open Source spokesperson: An Open Source Officer can act as an external
interface for the company for Open Source related inquiries or function as an
internal management consultant when Open Source is on the agenda in e.g.
management discussions.

Apart from the abovementioned areas, it is also important that the Open
Source Officer is working for the long-term objectives of Open Source with-
in the company through active change management, suggestions for future
improvements and networking in the Open Source community.

Management

L
e

g
al &

 IP
R Softw

a
re

Executive
management

Business unit
management

Open Source
board(s)

Head of
Open Source

Company
legal

department

Software
resources

management
and leaders

Open
Source
Officer

Developer

Architects

Software development
process teams

Legal unit for
the business unit

IPR for the
business unit

The Open Source Officer needs to have a cross-functional
perspective, acting at the center of activities related to govern-
ance and organizational support and development.

Open Source
Officer

Org-3

!

” “

28

Why it is important

Open Source constitutes a paradigm shift for software development and
with it follows a very specific set of logics, rules and cultural behaviors. For
a company to fully take advantage of all possibilities it is important to secure
the necessary domain expertise in the field. Without the support of an Open
Source Officer, everything from compliance processes to driving more ad-
vanced maturity patterns will be considerably more difficult to accomplish.

In addition, there is also the consideration of the multi-disciplinary impact
of Open Source in a company. Both organizational, hierarchical and techni-
cal boundaries are crossed, and it is essential to establish a role that connects
and interprets between everyone involved. Already from the start there will
be challenges in closing the gap between management, legal and engineer-
ing. The Open Source Officer can help to secure that things are not falling
between the cracks.

Considerations

A crucial starting point for Open Source in a company is the understanding
and commitment from management. Due to the bridging function of the
Open Source Officer role it is central that 1) management reporting is done
at an appropriate level with sufficient visibility, 2) the role is given necessary
bandwidth and mandate within the company and 3) management shares its
visions, continuously follows progress and supports the Open Source Officer
when needed.

The skill set needed from an Open Source Officer is in a sense both wide and
deep:

• Open Source licenses and obligations, development and governance.

• Knowledge and experience of driving process and change management on
a companywide level.

• Sufficient technical understanding to discuss with engineers.

• Strong communications and leadership profile.

In very large companies, there may be a need for more than one Open Source
Officer. The general recommendation is one Open Source Officer per site
and business unit, with a coverage of up to 1000-1500 employees. Similarly,
for a smaller company the Open Source Officer role might be covered by a
part time assignment.

Finally, to be effective the Open Source Officer needs an established and
well supported Open Source Board (see pattern Org-4), since this is the main
platform for governing the organizational efforts on Open Source.

Further reading

• C.E. Mols, K. Wnuk, J. Linåker , “The Open Source Officer Role –
Experiences” OSS 2017: Open Source Systems: Towards Robust Practices,
pp. 55-59.

Related patterns

• Org-1 Cooperation with Legal & IPR

• Org-2 Policies, Roles and Authorities

• Org-4 Open Source Board

• Proc-4 Control Contribution

?

!

“

29

There is a need for a forum where all the involved disciplines and
functions regularly can get together to align on matters concern-
ing Open Source, drive the implementation of Open Source prac-
tices and resolve issues when needed. This is the Open Source
Board.

What it covers

The Open Source Board is a forum where all the major stakeholders involved
in Open Source activities within a company meet and discuss on a regular
basis. The Open Source Officer (as described in pattern Org-3) is one of the
permanent members of the group that also covers delegates from Legal and
IPR, management and engineering.

The main mission for the Board is to define and support the Open Source
journey for the company by 1) establishing policies and processes, 2) setting
and monitoring key KPIs and 3) deciding on and governing improvement ac-
tivities that increase the overall maturity and capability level. Through actions
in these areas, the Open Source Board effectively governs the evolution of
Open Source and may appoint the Open Source Officer (or any of the other
board members) as a driver, for instance for cross functional activities where
organizational ownership is unclear.

Other duties for the Open Source Board include:

• To be involved in the contribution decision flow, for instance in complex
cases where the joint competence of the Board is called for or when IP

conflicts may arise (for large and complex contributions, see Pattern Proc-4
Control Contribution).

• To be an escalation point for issues where there are conflicting interests in
the company.

• To act as a knowledge base for Open Source and secure support and infor-
mation sharing when needed.

• To be a consultation body for all (larger) decisions that are to be taken with
respect to Open Source in the company.

• To monitor and support the Open Source introduction activities and other
needs in an company, e.g. training or competence requests reported by the
Open Source officer.

Why it is important

Since there are many stakeholders for Open Source within a company, it is
vital to create a forum where all can meet and agree on how to progress. This
constitutes the continuous mechanism that allows the involved disciplines and
functions to coordinate and collaborate on Open Source matters.

The cross-functional role of the Open Source Officer (see pattern Org-3)
also needs the Open Source Board as a platform for supporting activities and
resolving issues that arise in the daily work and to guide the initiatives towards
a higher Open Source maturity for the company.

The Open Source Board effectively governs the evolution of
Open Source and may appoint the Open Source Officer as
a driver, for instance for cross functional activities where
organizational ownership is unclear.

Open Source Board

Org-4

!

”
“

!

30

Considerations

The Open Source Board operates through a recurring meeting and at its ini-
tiation, it is important to set the rules, so everyone understands how it works,
by defining:

• The responsibility and mandate you want to assign to the Open Source
Board. The direction is given by executive management.

• Participation, ideally with a balance between different functions and hierar-
chical layers. Typically this could be software management, Legal and IPR,
Open Source roles (e.g. the Open Source Officer) and potential contribu-
tion proposers.

• How decisions are made (needed majority, possible vetoes, decisions at
absence etc.)

• Information sharing (minutes of meeting, intranet site, reports etc.)

• If and how to invite external participants when discussing escalations and
issues.

The Open Source Board should maintain a tangible understanding of the
ongoing Open Source activities in the company by defining, monitoring and
communicating a set of Open Source related KPIs. Relevant Open Source
KPIs to set up and monitor can be things like:

• Number of contributions (with qualifiers like team, product, contribution
type etc.)

• Accepted number of contributions.

• Amount of Open Source code in the product(s) .

• Number of compliance issues (anti KPI).

• Number of community participants on different levels.

Due to the potential business impact (both positive and negative) from intro-
ducing Open Source in an company, the Open Source Board should regularly
report its activities to the Head of Legal and to a relevant role within business.

Further reading

• C. E. Mols, Krzysztof Wnuk, Johan Linåker , “The Open Source Officer
Role – Experiences” OSS 2017: Open Source Systems: Towards Robust
Practices pp 55-59

Related patterns

• Org-1 Cooperation with Legal & IPR

• Org-2 Policies, Roles and Authorities

• Org-3 Open Source Officer

• Proc-4 Control Contribution

? “

31

Creating an Open Source community culture is about establish-
ing a de-centralized and highly networking development mod-
el where participation and contribution are the key drivers for
finding solutions to the common needs. A community culture is
instrumental in guiding the Open Source transformation journey
by defining a set of shared beliefs that shape the behaviors of the
organization.

What it covers

Looking into what drives a community culture, a good starting point is to un-
derstand how to empower individuals to act and think freely, which to some
degree means de-centralization of the mandate in the classical hierarchy. Key
characteristics of a community culture are:

Collaboration. Collaboration is core for a participatory culture since it allows
for better idea generation and implementation than can be found in the
command and control structure of a hierarchical organization. To encourage
collaboration, the community should provide processes and models for work
across team boundaries.

Transparency. All technical aspects of the code, design, architecture as well
as discussions and decision-making around it, need to be public and open.
This secures that everyone can see and act on the same information and es-
tablishes a pattern of trust among current and potential participants.

Self-Organization. Open Source communities typically organize according
to their needs, which span from flat and extremely interconnected for small
ones to semi-rigid hierarchical for the larger ones (like Linux). A development
organization that is promoting a community culture should therefore also
consider self-organization based on development needs rather than business
requirements.

Egalitarianism. Since the contribution model for Open Source is character-
ized by that anyone is allowed to contribute, it is important to instill that or-
ganizational position or belonging of a potential contributor is no limitation.
This is not only empowering the individual, but also increasing technological
diversity.

Meritocracy. Project direction in an Open Source community is driven by
value more than any other requirement. Value permeates the decision struc-
ture for contributions with peer reviews, voting and clear feedback loops.
Meritocracy with its self-organizing leadership also builds managerial trust.

Apart from the key characteristics, a community culture also entails an ex-
pressed vision or policy to strive for active Open Source participation. In this
context there is also a need to clarify and share the rules of engagement so
that everyone understands the ground rules.

There are many similarities with Agile “culture”. Comparing to the 12 prin-
ciples of Agile there are overlaps in ideas like “harnessing change”, “build
around motivated people”, “attention to technical excellence” and “self-or-
ganization”. Also, a well-known credo of Open Source communities is “Re-
lease early and Release fast” aimed at tightening the feedback loop between

A good starting point is to understand how to empower
individuals to act and think freely.

Open Source
Community
Culture

Org-5

!

” “

32

testers or users and developers, and this matches well with the Agile “deliver
working software frequently”. However, there are also differences – e.g. Agile
communication and improvement practices like promoting “face-to-face con-
versation” and “team reflection” that are not evident in a community culture.

Why it is important

To understand why culture is important, consider the expression “Cul-
ture eats strategy for breakfast” (attributed to the management guru Peter
Drucker). What it basically says is that any strategy or directive enforced on
an organization that is incompatible with its culture will fail. Thus, it can be
concluded that introduction of a community culture is required to support
the Open Source transformation

Although the definition of organizational culture in itself is very elusive, most
people agree that it shapes the behaviors of the workforce based on a set of
shared beliefs, whether codified or not. The important question to ask your-
self is: What behaviors do we want to encourage and how can we strengthen
them? And the answer is: Through culture.

Considerations

Building a culture from scratch (if that is the case) is not an easy task al-
though there is lots of advice around in the management literature. Simply
said it is about:

• Owning it – not passing it on to HR or any other department.

• Making sure you are articulating it – by having a joint understanding of
the vision and ideas around Open Source and a community culture that is
frequently communicated.

• Living it – by living the values, identifying champions to build around and
by measuring and rewarding good behaviors.

Outside of instituting cultural values and beliefs, there are a few activities that
can help people understand the ground rules of the Open Source culture in
your environment, including:

• Set and communicate the company policy around community participation.

• Clarify the local process for how to engage in Open Source communities.

• Give training in community behaviors – the dos and the don’ts expressed
as a sort of community interaction guideline.

• For larger organizations, introduction of inner sourcing could be a way to
nudge the development teams in the right direction.

In a successfully established community culture it will be completely natural
for an engineer to always consider Open Source as an alternative, and to look
at any situation from a Make-Buy-Share (pattern Proc-5) perspective.

Further reading

• S. O’Mahony and F. Ferraro, “The Emergence of Governance in an Open
Source Community” Academy of Management Journal, Vol. 50, No. 5

• S. Peters and N. Ruff “Participating in Open Source Communities”
https://www.linuxfoundation.org/participating-open-source-communities/

Related patterns

• Org-6 Grow Industry Experts

• Proc-5 Make-Buy-Share

• Proc-7 Create and Direct Communities

• Org-8 Collaborative Product Strategy

• Org-9 Self-managed Organization

?

!

“

33

To recruit or foster engineers to grow into roles as industry
experts is an important step in adapting to Open Source, as it
supports the transformation of the internal environment as well
as gives a company an ability to direct and govern Open Source
projects.

What it covers

A fundamental principle within Open Source is that no company has the
power to appoint people into a community governance structure as e.g.
contributors or committers – rather this is an earned status based on merit.
Thus, it is central for a company to understand how it can foster and prepare
potential community participants for the more advanced roles, eventually
becoming industry experts. There are a couple of key activities that support
this ambition and create the right supportive environment:

Build on culture: Demonstrate the commitment that the company has
towards Open Source through a community culture (see pattern Org-5) sup-
ported by training, company policies and processes.

Highlight contributions: Show that contributions are important by measur-
ing them with specific KPIs (like: number of submittals, number of accepted
contributions etc.) and give recognition to the engineers behind the contribu-
tion efforts.

Support individuals: Make sure that engineers have the right support avail-
able by 1) mentoring them on the journey from users, through contributors
to trusted committers and part of the core team, 2) giving technical training
(peer review techniques, community way-of-working etc.) and 3) allowing
time dedicated for community activities.

Internal community: Establish a local community with active discussion
forums to promote and share the Open Source community understanding
and values.

Why it is important

When a company fosters industry experts that are not only valuable for the
company itself but also for the community they are participating in, it has es-
sentially gained the ability and trust to direct and govern communities which
may eventually develop into ecosystems. In essence, a win-win set-up for all.

Growing experts is not only important for the capability to act more effec-
tively in Open Source communities, it also works as a very strong re-enforce-
ment of the internal community culture and helps to attract further talent.

It is central for a company to understand how it can foster
and prepare potential community participants for more
advanced roles.

Grow Industry
Experts

Org-6

!

!

” “

34

Further reading

• J. A. Roberts, Il-H. Hann, and S. A. Slaughter “Understanding the Motiva-
tions, Participation, and Performance of Open Source Software Develop-
ers: A Longitudinal Study of the Apache Projects “

• Management Science 200652:7 , 984-999

• https://opensource.com/life/16/1/open-source-skills

• https://opensourceforu.com/2013/06/what-it-takes-to-be-an-open-
source-expert/

• https://www.linuxfoundation.org/resources/open-source-guides/
improving-your-open-source-development-impact/

Related patterns

• Org-5 Open Source Community Culture

• Proc-7 Create and Direct Communities

• Proc-10 Create and Govern Ecosystems

• Org-11 Authority in Open Source

• Org-8 Collaborative Product Strategy

Considerations

It is important that the company that wishes to foster Open Source engineer-
ing skills is clear on the overall direction and recognizes and widely shares
contribution statistics regularly. The focus on individual growth can be made
even stronger by considering the following:

Incentives: Go even further than just highlighting contributions by making
them part of the company incentive schemes. This could range from allowing
active engineers to spend more community time, participate in events or even
receive monetary compensation. This is not only about rewards, but also to
signal recognition and respect.

Performance management: Let community participation and activity be
part of the personal development goals. Development career paths can be tai-
lored to community needs by designing the software job grades accordingly.
This is about giving purpose.

Build relationships: Relationships on a personal and organizational level are
an important aspect of participation in an Open Source community. At-
tending events and creating an active network should be encouraged for this
reason.

Mentoring: Established industry experts should be part of a network within
the company, where they can identify and act as mentors for potential future
talent.

An alternative that can be considered alongside with internal growth and
training is hiring. This can sometimes be the fastest available option if a com-
pany is seeking to gain influence in a community. Remember, however, that
for retention purposes and general interest from prospective engineers, the
hiring company must be able to present a community friendly environment.

“?

35

For a company that wishes to improve its external engagement,
there is the possibility to start a Developer Program. This can
expand the product offering, increase innovation and lead to a
better understanding of market needs and challenges.

What it covers

The basis for starting a Developer Program is a business decision around
sharing and extending the product software through external collaboration.
The audience for the Developer Program may be anything from closed
groups of partners to customers that you engage in a win-win set-up where
they gain speed, knowledge and depth in using your product, and you gain
understanding of their needs, innovative feedback and an expansion of the
product offering. It can also be completely open to anyone (any developer)
that cares to register.

To start a Developer Program you must be able to share your product
through a set of APIs that are made public, which means that you need to
work with proper API governance (as partly described in Pattern Prod-1
Modularization and Control APIs). It may seem obvious, but it is important
that the APIs you are exposing spark external interest – otherwise there will
be little or no participance in the Program.

As part of the Developer Program the company needs to supply an SDK
(Software Development Kit) containing the following core elements:

• Tools and resources – to simplify working with expanding your product.

• Documentation and guides.

• Examples – presenting sample code and examples of applications.

You also need to consider having regular technical support that can help
with understanding development principles, but also act on issue reports
and change requests. To share anything of common interest for the program
participants, you need to establish good communication through a web site,
blogs or social media channels. To run a Development Program that is re-
garded as open end listening thus requires a certain effort for the company.

Although there are similarities, the central difference between an Open
Source software project and running a Developer Program is that in the
latter case it is only the APIs that are exposed externally and that all code
(including the definition of the APIs) is fully owned and controlled by the
hosting company (You).

It may seem obvious, but it is important that the APIs you are
exposing spark external interest – otherwise there will be little
or no participance in the Program.

Open Source
Developer Program

Org-7

!

” “

36

Why it is important

There are many good reasons for running a Developer Program:

• Product expansion – letting your partners and customers add to the
product via exposed APIs will benefit not only you and themselves but
also others.

• Understanding market needs – through external usage of your APIs and
the feedback you get, you will learn more about the real market needs.

• Innovation – the addition of external development capability increases the
creativity and idea creation around your product.

• Customer satisfaction and loyalty – product expansion leads to better
market understanding and higher customer satisfaction with specific adap-
tations that also gives increased loyalty.

The learnings that a company makes by setting up a Developer Program can
also be the seed for starting an Open Source community down the road.

Considerations

Starting a Developer Program is a business decision and needs to be taken
considering the current business and its limitations. Thus, it is important to
understand how the existing business model for the product can be extended
through the program and the public APIs.

As with any software-intensive product, you should use metrics and KPIs that
measure the progress and success of the Developer Program. This could be
things like number of Program participants, retention, downloads or conver-
sion of the SDK and usage of the APIs.

Create buzz and interest by hosting events, participating in relevant confer-
ences and arranging competitions. Showcase partner and customer solutions
through your Program web site or blog (see examples from the very mature
and advanced programs at Apple and Google under further reading).

The Developer Program could potentially be a place to spot and recruit tal-
ented developers. However, to make sure that you attract the right attendance
in your program you will need to invest in using some of your most skilled
developers.

Further reading

• Apple Developer. https://developer.apple.com/programs/

• Google Developers. https://developers.google.com/

Related patterns

• Prod-1 Modularization and Control APIs

• Org-6 Grow Industry Experts

• Proc-7 Create and Direct Communities

• Prod-3 Creating a Software Platform
?

“

!

37

As soon as a company starts to use Open Source software, it will
as a consequence no longer have full control of the roadmap for
its products. Through more active engagement in communities,
the company can to some extent regain control by influencing
development. Still, the product strategy of the company needs to
be transformed into a collaborative model better adapted to the
distributed nature of working with Open Source.

What it covers

Many companies are moving towards a set-up with a high level of de-central-
ization based on teams with a mandate to take decisions in their own areas
of responsibility. This organizational change must also be reflected in how
the company is working with the product strategy by transforming it into a
Collaborative work model:

• Move from centralized detailed control to high level alignment and shared
consciousness.

• Empower development teams so they can contribute to the product strat-
egy.

• Secure that coordination practices are established and there is information
transparency both top-down and bottom-up.

Intake of Open Source software basically affects the company in the same
way since decisions related to the Open Source components are taken in the

communities. Therefore, a collaborative product strategy is very well suited
for organizations working with Open Source.

The roles working with a collaborative product strategy in an Open Source
environment are typically:

• Product Management as a central function shall:

 � Set the long term vision.

 � Drive the Make-Buy-Share strategy.

 � Provide a collaboration framework for the product strategy that the
teams can use.

 � When the maturity level has increased – understand and utilize crowd-
based requirements engineering (see pattern Proc-9 Crowd-based
Requirements).

• Teams and individuals working within Open Source shall:

 � Share information on what is happening in the community.

 � Identify opportunities (e.g. through external scouting activities or crowd-
based requirements on a more advanced level, see pattern Proc-9).

For the different Open Source components that the company is using, there
is a need to set a strategy for its level of engagement. This is partly covered in
the patterns Proc-5 Make-Buy-Share and Proc-4 Control Contribution. Min-
imum is to establish an internal “owner” that keeps track of the component
development, updates and potential security patches.

To gain the advantages of using Open Source,
a company needs to accept the reduced control over the
product that comes with decision making being done in
the communities.

Collaborative
Product Strategy

Org-8

!

”
“

38

Why it is important

To gain the advantages of using Open Source, a company needs to accept
the reduced control over the product that comes with decision making for
Open Source components being done in the communities. Consequently, the
product strategy has to be adapted to a collaborative model with both top-
down and bottom-up characteristics, unlocking more of the opportunities
offered by Open Source. The resulting product management way of working
is similar to scaled agile systems.

Considerations

Looking at the Open Source transformation journey overall, the fact that
the company needs to sacrifice its full control over the product is one of the
mind-set transformations to manage. The perceived disadvantage of losing
control needs to be contrasted with all the advantages of Open Source in
general and the power of a collaborative model in particular. This organi-
zational transformation needs to be addressed early on in the Open Source
journey by explaining the way forward and how this is, after all, much better.

In line with the above, the people working within product management will
most likely need coaching and training to understand how to gain the most
benefits out of a collaborative model, stop trying to define all the details of
the product roadmap themselves and starting to work more through align-
ment, long term visions and Open Source strategies.

Understanding commoditization in the software industry is one of the critical
factors that can lead to an acceptance of adopting a collaborative product
strategy. Companies that nonetheless still want full control over the code
and are willing to pay the price for it, will need a strong business incentive as
justification.

Making a successful product strategy in an Open Source environment
requires understanding of many aspects of Open Source (in this booklet de-
scribed across several patterns) and how it affects the company. This includes
things like Make-Buy-Share strategies, component contribution strategies and
community culture – and the Open Source Board that is driving the Open
Source journey in the organization.

Further reading

• M. DeHaan “6 steps to perfecting an open source product strategy”
https://opensource.com/article/17/9/
demystifying-open-source-product-strategy

• D. Neary “Crafting an Open Source Product Strategy”, Open Source
Community of Redhat https://community.redhat.com/blog/2018/04/
crafting-an-open-source-product-strategy/

Related patterns

• Org-4 Open Source Board

• Org-5 Open Source Community Culture

• Proc-5 Make-Buy-Share

• Org-6 Grow Industry Experts

• Proc-4 Control Contribution

• Proc-9 Crowd-Based Requirements

• Proc-7 Create and Direct Communities

?

! “

39

A company that is based on self-managed teams supported by a
visionary leadership has a much higher probability of flourish-
ing in the complex, collaborative and dynamic environments of
the Open Source world. This type of organization will be able to
identify and harvest new business opportunities and use Open
Source communities and ecosystems to realize them.

What it covers

Changing the organization in the company towards being flatter, self-man-
aged and bottom-up oriented with a coaching rather than commanding
leadership style can be a large and complex effort. It involves an overhaul of
the company culture as well as transformation of roles and responsibilities of
leadership, teams and the individuals.

Culture is an important fundament for any company and especially so for
a self-managed organization where culture is a part of the framework that
makes it all tick. As expressed in the pattern Org-5 Open Source Commu-
nity Culture, the key characteristics are transparency (information is openly
shared), egalitarianism (anyone can contribute regardless of position or role)
and meritocracy (self-organized leadership based on value and trust).

The company leadership provides a clear direction that is shared and under-
stood in the sense of a common consciousness. They do not lead by com-
mand in the traditional way, but make sure that all teams have the means and
the mandate to do what is needed. Cross-organizational concepts like estab-

lishing a company vision, defining business models and setting ecosystem
strategies are still a responsibility for the leaders. For the product strategy, this
can be seen as a further evolution of the pattern Org-8 Collaborative Product
Strategy.

The fundamental organizational unit is the team, consisting of different roles
to make it as autonomous as possible. It is self-managed based on the shared
vision, but maintains a close and regular communication with other teams to
create understanding of their context. New methods and tools are decided on
and adopted at the discretion of the team, but cross-functional alignment is
expected. Decision making is always done at the lowest possible level, which
is often the team. This way, ad-hoc business opportunities can be harvested
and driven bottom-up.

Although everyone is part of and contributing to a specific team, the individ-
ual in the self-managed organization has the privilege to contribute to work
done in any team, to swap teams if wanted or needed and to explore oppor-
tunities that emerge. In all this freedom, there is on the other hand also an
expectation to step in for others when needed – even if this may be outside
of the regular area of responsibility. This is in direct accord with the ambi-
tion to grow competence and recognition described in pattern Org-6 Grow
Industry Experts.

Why it is important

There are several reasons for why a self-managed organization is advanta-
geous. Due to the similarities with the set-up of Open Source communities, it

The company leadership provides a clear direction that is
shared and understood in the sense of a common conscious-
ness. They do not lead by command in the traditional way, but
make sure that all teams have the means and the mandate to
do what is needed.

Self-managed
Organization

Org-9

!

”
“

!

40

will be considerably better at interacting with these. It will also be well adapt-
ed to harvesting Open Source business opportunities. Apart from the specific
Open Source oriented advantages, it will also enjoy generic benefits like high
speed decision making, a natural adaptiveness to change, enabling innovation
and empowerment of employees.

Considerations

For large organizations, the introduction to a self-managed set-up is very
challenging since it involves changing culture, expectations and behaviors and
involves lots of communication, training, involvement, short and long-term
goals and visions. As in all such transformations, it is better to break down
the change in reasonable steps than to do it all at once. The important thing
is to establish a shared understanding of the wanted state so the self-managed
teams can interact with remaining pockets of traditional style organization in
a good way.

Some suggestions on how to introduce a self-managed organization:

• Start with development teams and gradually increase their
responsibility to include business aspects.

• Select teams that cover a specific product or a well-defined part
of a product.

• Then make sure that it covers all of the software organization.

• Finally, introduce it across the whole company.

Companies that have embarked on the transition to Agile will recognize many
of the principles, although the self-managed organization is a wider change
where team and individual freedom is larger and the perspective on business
is broader.

The organizational change will most likely happen in parallel with the change
to become a software-centric service oriented company (see e.g. patterns
Prod-4 Own Service Offerings, Prod-6 Service-based Business and Org-10
Directed by Business Aspects). This tends to be something that makes the
change simpler and more natural since it goes hand in hand with the explora-
tory and business-oriented way of working in the teams.

Further reading

• Mruzik & Peters, Smart Business, 12/1 2017, http://www.sbnonline.com/
article/look-self-managed-corporate-structure/

• Frederic Laloux, Reinventing Organizations, 2014-02-20, Laoux, ISBN:
9782960133509

• W. Ke and P. Zhang, “Effects of Empowerment on Performance in
Open-Source Software Projects”, IEEE Transactions on Engineering
Management, vol. 58, no. 2, pp. 334-346, May 2011.

• H. Holmström Olsson, J. Bosch, “No more bosses?: A multi-case study
on the emerging use of non-hierarchical principles in large-scale software
development” , International Conference on Product-Focused Software
Process Improvement PROFES 2016: Product-Focused Software Process
Improvement pp. 86-10.

• W. Aghina, A. De Smet, G. Lackey, M. Lurie, M. Murarka “The five trade-
marks of agile organizations”, McKinsey https://www.mckinsey.com/
business-functions/organization/our-insights/
the-five-trademarks-of-agile-organizations”

Related patterns

• Org-5 Open Source Community Culture

• Org-8 Collaborative Product Strategy

• Org-6 Grow Industry Experts

• Org-10 Directed by Business Aspects

?

“

41

This pattern describes how a company can become directed by
business aspects of Open Source. This primarily includes iden-
tifying and harvesting new business opportunities from various
forms of Open Source engagement. In addition, the company
must also understand and apply new business models enabled by
Open Source and explore new business areas.

What it covers

This pattern covers two main elements. The first one is about understanding
and utilizing new types of business models that are made possible through
Open Source involvement. The second element describes the organizational
capabilities needed to identify and harvest business opportunities.

The new types of business models include:

• Extended business models, where a company monetizes additional ser-
vices offered together with the software rather than the software itself
(e.g. support services, freemium, add-ons, supplementary training, tools,
dual-licensing).

• Indirect business models, where software is included into the price of a
hardware or service offering (e.g. selling hardware at premium price and
software is included “free of charge” or selling services and Open Source
software enables those services to be run).

• Asymmetric business models, where revenue is based on the effects of
running software and collecting data. Asymmetric business models are
important for data monetization strategies that often involve sharing an
Open Source solution for free and creating revenue streams from customer
data inserted into the solution (e.g. provide Android for free and get reve-
nue from ads or monetize user data through direct and indirect marketing
activities).

Ensuring capabilities to identify and harvest business opportunities that Open
Source participation brings, requires an organization that is self-managed and
empowered (as described in pattern Org-9 Self-Managed Organization).

Opportunities that arise are often market disruptive (like entering new mar-
kets with an Open Source platform or create a new Open Source ecosystem
to challenge proprietary solutions in a given market segment – examples
can be found in the Further Reading material). Working with Open Source
solutions on this level requires organizational maturity in establishing Open
Source structures and delivering software that sparks an interest in the Open
Source communities.

Why it is important

It is difficult to sell software as a product in a “traditional way”. Open Source
has changed the pricing models and ways of monetizing your software de-
velopment efforts. There is a set of good reasons for a company to develop

Open Source engagement makes it simpler for the company
to continuously deliver additional value to the customers to
maintain price levels.

Directed by
business aspects

Org-10

!

” “

!

42

the capabilities required for leveraging the business potential residing in Open
Source:

1. A company that has the capability to work with Open Source on a high
maturity level will also be able to harvests business opportunities from
Open Source involvement. It understands and can exploit revenue streams
that are based on extended, asymmetric and indirect business models.

2. Open Source engagement makes it simpler for the company to contin-
uously deliver additional value to the customers to maintain price levels
(e.g. services, data analytics or other forms of customer business support).
Without additional value the customers will pressure for price optimiza-
tions that further limits cost of development.

3. Open Source participation lowers entry barriers significantly and enables
new business areas to be pursued.

Considerations

There may be organizational resistance to simultaneously handle several busi-
ness models and move between them when appropriate. Thus, a significant
change management effort may be needed to get to a company that is driven
by business aspects of Open Source.

Another important aspect is that this pattern requires several other patterns as
prerequisites, e.g. pattern Org-6 Grow Industry Experts. It is also important
to share an understanding of the business side of Open Source participation
with the engineers, to help direct development efforts towards value creation
and capturing relevant functionality.

Finally, what engineers believe are good features may not be appreciated by
the market and the customers. Not all ideas will result in creating new Open
Source communities. Therefore, establishing evaluation mechanisms to select
ideas with the right potential is important to avoid creating “solutions that
are looking for problems”. Sometimes this means that a few engineer darlings
need to be killed.

Further reading

• Lerner, J. and Tirole, J. (2002), “Some Simple Economics of Open
Source”. The Journal of Industrial Economics, 50: pp. 197-234.

• M. Svensson, M. Agarwal, S. Terrill, K. Wallinn, “Open, intelligent and
model-driven: evolving OSS”, https://www.ericsson.com/en/
ericsson-technology-review/archive/2018/
open-intelligent-and-model-driven-evolving-oss

• B. Fitzgerald, “The Transformation of Open Source Software”, MIS Quar-
terly Vol. 30, No. 3 (Sep., 2006), pp. 587-598

• K. Sandeep, “An Analysis of Open Source Business Models. Making Sense
of the Bazaar: Perspectives on Open Source and Free Software” , MIT
Press

Related patterns

• Org-11 Authority in Open Source

• Org-9 Self-managed Organization

• Org-6 Grow Industry Experts

• Proc-10 Create and Govern Ecosystems

• Proc-8 Industry-wide Collaborations

?

“

43

Larger, global Open Source organizations, often managed as
foundations, increasingly define what becomes de-facto world
standards. To gain access and take leadership in those, thus
being able to influence and drive market-shifting initiatives, a
company must strive for and become a leading Authority in Open
Source.

What it covers

Already in the early days of the Free and Open Source software movement it
came naturally to manage development in the non-profit organizational form
as a foundation. Richard Stallman founded the Free Software Foundation as
early as 1985, the Linux Foundation can trace its origins to Linux Internation-
al in 1993 and the Apache Foundation to 1999. As these foundations grew
massively in size over the years, their specific software technology domains
grew as well to the point today that they host a vast variety of Open Source
project of which many are engaged well beyond the original intent.

The foundations have become so dominant in software technology develop-
ment that they today by far overreach the abilities of the traditional bodies
for industry collaboration, the standards institutes. Thus, the foundations
have become able to establish their technology with a near universal uptake
and following, to the extent that the technologies are perceived as de-facto
standards. Interesting enough, it has lately been observed that some standard-
ization bodies, e.g. the European Telecommunications Standard Institute, are
considering adopting Open Source practices for their standardization work.

The Authority in Open Source pattern is about a company having sufficient
organizational capacity and recognition to drive and direct the market-
place through industry-wide collaborations as found in the foundations.

Capacity as an Authority in Open Source is generally required to gain a seat
in a Foundation’s governance board. A governance board is seldom allowed
to interfere with the development work within a foundation’s Open Source
projects. However, as the governance board has the responsibility for secur-
ing the overall success of a foundation, it decides on which projects to run
or close. Hence, having a seat in a foundation’s governance board supports
the viability of your Open Source project, paving the road for it to become a
de-facto standard, and in the long run securing its prospect as a new market
offering. This implies that the capacity will rely heavily of on a generous
availability of a well-seasoned staff with both software industry expertise as
well as managerial skills in collaborative engagements.

Recognition is generally achieved by sharing comprehensive knowledge and
expertise on all the different aspects of Open Source such as:

• Experiences on different governance models for communities.

• Mastering different Open Source-based business models.

• Access to world renowned legal expertise on Open Source.

• Extensive research and education in the area of Open Source.

Note that a considerable organizational capacity in both staffing and com-
munications is required to achieve the above. The tools of communications
includes activities such as workshops, hackathons, conference talks, a heavy

The large foundations increasingly define what ends up as
de facto world standards based on Open Source. Becoming
an authority in Open Source gives access, leverage and
influence into the foundations.

Authority in
Open Source

Org-11

!

”
“

44

presence on the web, community management, etc., all aiming to maximize
the knowledge exchange which in the end should lead to a recognition as an
Authority in Open Source. As such, a company would likely find that instead
of chasing after business opportunities, they would come to the company.
This as an Authority in Open Source obviously is open for the widest possi-
ble industry collaborations while it also is accepting to take on a leading role
in the marketplace.

Why it is important

A major trend the latest years is that Open Source communities are merging
into a handful larger Open Source organizations, often managed as founda-
tions, thus covering a wider area of interest. An example is the Linux Founda-
tion, which has lately emerged as the Open Source organization par excellence.

The large foundations increasingly define what ends up as de facto world
standards based on Open Source. Becoming an authority in Open Source
gives access, leverage and influence into the foundations, thus having a say of
some weight on what will become industry-wide used standards.

Considerations

It’s not for everyone to be recognized as an Authority in Open Source as it
requires considerable organizational capabilities, in par with creating and
maintaining an own ecosystem. As recognition is achieved by sharing exper-
tise, it’s key to have a comprehensive participation in the work of larger
Open Source communities, supplemented by extensive communication.
This indicates that it will be too challenging for smaller companies.

In order to lower the overall organizational burdens, it could also be consid-
ered to move the management of an Open Source platform of an own
orchestrated ecosystem to a foundation. As this also enhances the opportuni-
ty of the platform becoming recognized as a de-facto standard, such a move
would likely secure success in the market (see picture).

An example of this is Kubernetes, an Open Source system for the manage-
ment of containerized applications. Originally designed by Google, it is now
maintained by the Cloud Native Computing Foundation, which is part of the

Linux Foundation. Since its release in June 2015, Kubernetes has established
itself as one of the hottest available cloud technologies and have quickly
attracted a massive attendance from the industry.

?

!
Own ecosystem

Open Source
Foundation

Softw
are Platform

A quite common alternative to launch an Open Source platform in an ex-
isting foundation is to create a specific foundation for the platform, while
untangling yourself from full stewardship. Two good examples: IBM with
their original Eclipse IDE (Integrated Development Environment) that
became the Eclipse Foundation, and likewise what server company Rackspace
pursued with their open OpenStack cloud platform, as it became planted into
the OpenStack Foundation. Both serve as good examples of how to create
backing from the industry and establish de-facto standardization in their
corresponding areas.

45

Further reading

• The Cloud Native Computing Foundation: https://www.cncf.io/

• The Linux Foundation: https://www.linuxfoundation.org/

Related patterns

• Org-7 Developer Program

• Org-5 Open Source Community Culture

• Org-6 Grow Industry Experts

• Org-10 Directed by Business Aspects

• Proc-7 Create and Direct Communities

• Proc-10 Create and Govern Ecosystems

“

46

Product
Patterns

47

Modularization is a generic software engineering practice that
supports decomposition of large systems and enables a struc-
tured way of working with Open Source.

What it covers

Modularization is a commonly known software practice that is especially rele-
vant for large, complex software systems. Modularization implies that:

• Code should be separated into logically independent modules, i.e.
separated based on distinct tasks that the code performs.

• All internal details of a module should be hidden behind a public interface
(API, Application Programming Interface).

With properly modularized code you can expect to gain these advantages:

• Code will be easier to understand and troubleshoot.

• Testing will be less painful (and automated testing is facilitated.)

• It will be simpler to reuse and re-factor the software.

So, what is the connection to Open Source? First of all, it will open the
opportunity to plug in Open Source solutions into your codebase and allow
mixing of Open Source and proprietary code. This will certainly be possible
even in a monolithic structure, but it will be at a much higher cost both for
introduction and maintenance (and make it much more difficult to control
compliance). Second, it will enable Open Source code under incompatible
licenses (that can be isolated in different modules). Third, in a modularized

architecture it will be possible to create your own Open Source projects from
suitable components in the system.

With modularization there also follows organization-wide or public APIs, and
thus the need to maintain and govern these over time. In particular for a large
company there needs to be policies on how to publish, promote and maintain
APIs. It is easy to understand unwanted impacts of weak design or changes
to APIs that are publicly available, but even for internal APIs it is important
to keep a good level of discipline (a point that has been extremely clearly
expressed by e.g. Amazon as can be seen under Further Reading).

Why it is important

There are several positive effects on Open Source from doing modulariza-
tion:

• It makes it simpler to integrate Open Source solutions into existing software.

• It facilitates a more complex usage of Open Source like using many differ-
ent Open Source project solutions.

• It’s a pre-requisite for building platforms and eco-systems to increase com-
petitiveness in the long run.

• Finally, it makes it possible to take the next step on the Open Source
journey, i.e. to contribute your own code to Open Source projects or even
create Open Source projects.

Open the opportunity to plug in Open Source solutions
into your codebase and allow mixing of Open Source and
proprietary code.

Modularization and
Control APIs

Prod-1

!

” “

!

48

Considerations

Since modularization is a fairly common practice within software develop-
ment, there are many helpful tips on what to think about, for instance:

• Aim for Cohesion – which basically means that a well-designed module
should cover a specific job or task that makes sense and not just be a col-
lection of logically unrelated functions.

• Low Coupling – the need for data that is kept in other modules should be
as low as possible, i.e. effective de-coupling.

• Information hiding – the inner logics of a module should be hidden.

Make sure that your APIs are regularly monitored to check that they are used
as intended or if the traffic is unusually high or low suggesting that they need
to be changed or can be removed.

For small companies it may seem like a hefty task to do full API governance
and maintenance, but there are many tools to use that can lessen the burden
considerably.

Further reading

• http://apievangelist.com/2012/01/12/
the-secret-to-amazons-success-internal-apis/

• K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. “The structure and
value of modularity in software design.” SIGSOFT Softw. Eng. Notes 26,
5 (September 2001), 99-108.

Related patterns

• Proc-1 Control Compliance

• Proc-2 Control Intake

• Prod-2 Code Management

• Proc-6 Frequent Releases

• Proc-4 Control Contribution

• Proc-5 Make-Buy-Share

• Proc-7 Create and Direct Communities

• Org-7 Developer Program

?

“

49

Code Management describes what you need to know about your
codebase in order to do the right things and take the right deci-
sions in an environment that includes code from different sourc-
es, like Open Source software. Component level control enables
effective and professional governance of Open Source, as de-
scribed in other patterns.

What it covers

The first step of Code Management is to produce a full inventory of all your
components including information on where and what Open Source is used.
Apart from the issues around defining and counting components in what may
be a complex system, this could seem like a straightforward task given that
the company is in control of its Open Source usage – but consider that there
are many ways for Open Source to enter software “under the radar”. These
include unsolicited developer downloads, code reuse, inclusion of commercial
applications, third party code and outsourced development to name a few.

When doing the inventory, there will be a need for metadata information
like origin project, version number, license type, dependencies, technology
involved and implemented functionality. The resulting component catalog
is not only applicable for Open Source, but can be used generally for things
like setting up the software bill of materials (SW BOM) for your products or
tracking of third party components.

Once the catalog has been established, it is equally vital to keep it updated
and relevant over time, not least given all the changes a codebase usually
undergoes. The information on Open Source components contained in the
catalog will also support other patterns like compliance and product strategy
(see patterns Proc-4 Control Compliance and Org-8 Collaborative Product
Strategy).

Why it is important

Code Management is mainly an enabling pattern that prescribes the com-
pilation of a component catalog for the codebase of a company. By having
control of where proprietary, third party and Open Source reside in the sys-
tem, the company will be able to work with Open Source in an effective and
professional way as described in some of the other patterns.

The inventory of Open Source will also be helpful when maintaining prod-
ucts that are released to the market. New releases of Open Source compo-
nents may be essential to update due to e.g. major issue fixes or newly discov-
ered security vulnerabilities. Considering that Open Source is likely to be part
of the codebase even if it was not put there deliberately by you, it is easy to
understand that the component catalogue is an indispensable tool.

By having control of where proprietary, third party and Open
Source reside in the system, the organization will be able to
work with Open Source in an effective and professional way.

Code Management

Prod-2

!

” “

!

50

Considerations

A modular structure of the software (as described in pattern Prod-1 Modu-
larization and Control APIs) will considerably simplify Code Management.

As the codebase in the company grows, it will become increasingly difficult
to maintain a full view of all the components in the system. At that point
it can be wise to consider a tool. There exists a large variety of commercial
and Open Source systems that can help out with Open Source management
ranging from doing inventories (as mentioned in this pattern) to governance
and compliance. Such tools will generally also support Code Management
for proprietary and third party components and tool selection should take all
mentioned factors into account.

Although Open Source favors distributed decision making and organizational
structures, Code Management is a practice that has to be governed centrally.
If you want to secure a complete documentation of the system, there should
only be one way of doing it.

Further reading

• I. Haddad “Using Open Source” https://www.linuxfoundation.org/
using-open-source-code/

Related patterns

• Prod-1 Modularization and Control APIs

• Proc-1 Control Compliance

• Proc-2 Control Intake

• Proc-4 Control Contribution

• Proc-5 Make-Buy-Share

• Org-8 Collaborative Product Strategy

“

?

51

Creating a software platform establishes cost-effective code reuse
mechanisms between projects, increases code quality and sta-
bilizes interfaces. It also enables a company to develop comple-
mentary services based on the platform.

What it covers

A software platform offers code reuse between projects, gives lower mainte-
nance costs and improves code quality. The architectural principle behind cre-
ating a software platform is to divide the complete system into reusable parts
(the actual platform) and project specific parts (variants). (This is according to
the Software Product Line principle that can be found under Further Read-
ing.) The development environment and tools are shared between projects
and variant development is done on top of established and stable platform
interfaces. The obvious advantage of creating a platform is that it increases
software development efficiency and effectiveness by reusing rather than de-
veloping most of the code in each project. However, it also makes it simpler
to add additional services on top of the platform.

To ensure evolution and maintenance of the platform, each software project
that is based on a platform needs to include the following steps:

1. Get the latest version of the platform code and configuration files that
describe possible variants and versions.

2. Plan for additional development of features.

3. Decide if the developed features are going to be integrated in the platform
or not (as much code as possible should be reused).

4. Integrate selected reusable features with the platform code and update the
configurations.

Why it is important

The main benefits for organization from building a software platform in-
clude:

• Creating a software platform increases code reuse between projects – since
new project are based on previous development activities. Thus, develop-
ment time and maintenance costs decrease, and code quality increases, as
code improvements propagate to all future products

• Complementary services can be offered – the software platform ensures
that services are possible to deliver to all products based on the platform.
Development resources can be dedicated to service development rather
than platform maintenance

• Code quality and interfaces – reuse increases code quality as potential
errors are detected, fixed and integrated into the platform rather than a
single product. Clear and stable interfaces and APIs are the prerequisite for
reaching stable high-quality platforms.

All code that is used in cross customer implementations
should be in the platform.

Creating a Software
Platform

Prod-3

!

” “

!

52

Considerations

Raising code quality levels and providing clear and stable interfaces are the
key elements in building a software platform. Moreover, modularity is nec-
essary to enable cross-project reuse (see pattern Prod-1 Modularization and
Control APIs).

Creating a platform must be synchronized with increased transparency of
the requirements engineering processes and sharing strategic plans for the
platform with the projects that reuse the code.

When a company has created a platform, it should consider if it can be
released as Open Source since this gives additional opportunities in terms of
e.g. shared development and extended innovation (see pattern Prod-5 Open
Source Driven Platform Innovation).

Platforms should be created based on reuse principles, meaning that all code
that is used cross customer implementations should be in the platform. This
often implies that platform code represents non-competitive parts of the
offering. The risk of losing valuable IPR is therefore low for these parts and
they can be shared openly with the communities.

Further reading

• Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

• Sony Mobiles Open platform https://developer.sony.com/develop/
open-devices/ as an example.

Related patterns

• Prod-1 Modularization and Control APIs

• Prod-5 Open Source Driven Platform Innovation

• Prod-6 Service-based Business

“

?

53

When a company starts to offer services as a complement to its
products, it is in essence extending its product offerings and
opening up for new revenue streams. Through the services the
company also has an opportunity to create a closer relation to its
customers and partners.

What it covers

Servitization is a transformation journey where companies (think: industrials)
develop capabilities needed to provide services and solutions that comple-
ment and extend the traditional product offering. In this transformation, a
shift happens from developing and selling a product to the customer, to a
system where the company evolves its capabilities and processes towards
creating mutual value (for the company as well as the customers) through
services. This pattern describes the first step on the journey.

To give a better idea of what the first level of services could be, consider ser-
vices like scheduled maintenance, technical helpdesk, repairs, product over-
haul, installation, operator training and certification, condition monitoring
and in-field service. Hence, the customer still owns the product, but services
that go beyond the initial (“one off ”) sale are also offered and they are typi-
cally value-adding when being used (over the lifetime of the product).

Servitization is a generic concept, but it provides a good mechanism to mon-
etize usage of Open Source. A company that is starting to work with services

also has an opportunity to open up APIs for partners and developers. If this
is done through e.g. a developer program (see pattern Org-7), there is an
opportunity to extending the service portfolio through a collaboration with
partners and customers. This is the starting point of recognizing that the
product is a platform from which services can be developed.

Why it is important

Extending the product offering by offering services is basically a way of
gaining a competitive advantage. This can be forced on a company struggling
with low cost competition to its product, but regardless if this is the situa-
tion there are certainly also good financial incentives for developing services,
since they complement the “one off ” sale of the product with new revenue
streams. Furthermore, using Open Source removes the question of value of
the software itself and instead puts focus on what the services offer and what
revenue can be created from them.

Apart from increasing competitiveness and creating new revenue, customers
have also come to expect services being added to more advanced products,
thus adding value throughout their lifetime. For companies that offer servic-
es through a cloud implementation, there is also the advantage of simpler
version control.

Customers have also come to expect services being added to
more advanced products, thus adding value throughout
their lifetime.

Own Service
Offerings

Prod-4

!

” “

!

54

Considerations

One of the largest challenges with servitization lies in the change from a tra-
ditional product view to a service culture. Understanding that the product can
be a platform to deliver services is a big step that impacts a large part of the
company. Making the change incremental by introducing the type of first-lev-
el services mentioned above is often a good idea, but it still involves dramatic
changes to e.g. marketing, sales and KPIs.

Both technical and capability factors need to be considered when starting
with services including things like security, privacy, usability, robustness
(should there be 24/7 availability, for instance) and performance. These are
things that have probably not been needed to manage before.

Collecting, storing and analyzing data in a data driven way is an opportunity
that becomes more available as the interaction with the customer is enhanced
with servicese. This requires the company to learn how to do it and under-
stand how this can offer market and customer insights that will improve the
portfolio.

Further reading

• Andy Neely, 30/11 2013, http://andyneely.blogspot.se/2013/11/
what-is-servitization.html

Related patterns

• Prod-1 Modularization and Control APIs

• Org-7 Developer Program

• Prod-3 Creating a Software Platform

• Prod-6 Service-based Business

“

?

55

Open Source Driven Platform Innovation is about releasing your
platform as Open Source software to enable two kinds of inno-
vation: 1) additions to the platform and quality improvement
suggestions from the Open Source community and 2) extracting
products from Open Source software platforms.

What it covers

A company that creates a software platform can decide to release this plat-
form as Open Source software meaning that the platform code and its inter-
faces are shared with an Open Source community. The goal for the company
is to attract external innovation by allowing new functionality and additions
to be developed by others and aim for the Open Source platform to become
a de facto standard. Enabling external involvement (also called harvesting the
“Open Innovation” model, see Further Reading material) significantly speeds
up development and frees up internal resources for other activities.

The company that owns platform becomes the platform leader and manages
governance and other activities needed to launch the Open Source platform:

• Platform participation rules and Open Source licenses are established.

• Contribution processes are introduced.

• Communication and discussion channels are established and made availa-
ble for interested stakeholders and developers.

• Relevant information is published in a transparent way (e.g. the platform
roadmap, development rules and processes)

• Marketing activities should follow to attract developers or other companies
to join the platform and create products based on the platform.

Releasing the platform as Open Source ideally shifts innovation towards
happening externally (in the community) rather than internally. Based on how
and by whom the Open Source platform is used and innovated on, this gives
the company a possibility to understand market needs and extract products
either from the platform itself or as new functionality in separate products.

Finally, when the Open Source platform receives wider adoption, the plat-
form leader can utilize the contact network of the organizations using the
platform to establish industry-wide collaborations or offer additional prod-
ucts (or services and consulting around the platform). (Also see pattern Proc-
8 Industry-wide Collaborations)

Why it is important

Launching a software platform as Open Source brings several benefits to the
company. If it is successfully managed, the platform may become a de facto
industry standard, which creates a competitive advantage compared to other
companies. Even if this potential is not fully reached, a number of benefits
can still be achieved:

1. It further increases code quality since Open Source users and developers
act as additional testers and quality assurance experts - suggesting improve-
ments to the platform.

2. It broadens the usage of the platform – other companies find new use
cases and create new products based on the platform.

If successfully managed the platform may become a de facto
industry standard.

Open Source Driven
Platform Innovation

Prod-5

!

” “

!

56

3. It brings opportunities to co-create value with companies that extract
products from the platform and form alliances in new markets or business
areas.

4. It creates a network of organizations using the Open Source platform.
This could trigger industry-wide collaborations.

 Considerations

Releasing a software platform as Open Source is clearly a business decision.
There should be a good rationale behind the decision, a plan for how plat-
form governance should be set up and a clear strategy for how to leverage on
the platform when it is Open Source.

Good Open Source candidates are software platforms that do not bring sig-
nificant revenue (require extension with services or additional components),
or platforms that risk becoming commoditized but can still spark external
interest. Thus, it is critical to understand when and how the market for the
platform matures and when the cost of ownership becomes bigger than
potential revenues.

Releasing a software platform as Open Source requires establishing stable
interfaces and communication and coordination mechanisms. It is also impor-
tant to remove the participation barriers and create educational material for
developers interested in joining the Open Source platform, e.g. online courses
or wiki-based instructions how to start developing additional functionality
on the top of the platform. Attracting developers is critical when the Open
Source platform is announced, and this should be supported by public events
(like developer days, sessions at industry conferences).

Management taking the release decision need to ensure that the necessary
technical infrastructure is in place (for online discussions and distributed de-
velopment), that the “platform launch” event is planned and coordinated and
that publicity activities follow. Finally, long-term commitment and dedicated
moderators and facilitators are needed to keep activity in the community alive
and to keep external developers’ motivation. This requires dedicated industry
experts to govern the platform development.

Further reading

• H. Chesbrough, W. Vanhaverbeke, and J. West, Eds., “New Frontiers in
Open Innovation”. Oxford University Press, Nov. 2014.

• H. Munir, J. Linaaker, K. Wnuk, P. Runeson, and B. Regnell, “Open inno-
vation using open source tools: a case study at Sony Mobile,” Empirical
Software Engineering, pp. 1–38, 2017.

• Khurum, M., Gorschek, T. and Wilson, M. (2013), “The software value
map — an exhaustive collection of value aspects for the development of
software intensive products”. J. Softw. Evol. and Proc., 25: 711–741.

• J. Linåker, H. Munir, K. Wnuk, C.E. Mols, “Motivating the contribu-
tions: An Open Innovation perspective on what to share as Open Source
Software”, In Journal of Systems and Software, Volume 135, 2018, Pages
17-36.

• I. Haddad, F. Benard “Good and Bad Reasons to Open Source Your Soft-
ware How do you measure up? “ http://www.ibrahimatlinux.com/
uploads/6/3/9/7/6397792/05.pdf

• J. Bosch “From Software Product Lines to Software Ecosystems”, 13th In-
ternational Software Product Line Conference (SPLC 2009) August 24-28,
2009, San Francisco, CA.

Related patterns

• Prod-3 Creating a Software Platform

• Proc-8 Industry-wide Collaborations

• Proc-9 Crowd-based Requirements Engineering

• Proc-10 Create and Govern Ecosystems

• Org-10 Directed by Business Aspects

?

“

57

As the level of servitization evolves and increases in the compa-
ny, there may still be a product, but this will no longer be what is
actually monetized. By marketing and selling services, the busi-
ness has transcended the barriers surrounding products and can
enjoy a win-win-win situation for all – the company, its partners
and its customers.

What it covers

When the company continues on its servitization journey, it will reach a
point where its business is completely based on services. There can still be a
product, but this is owned by the service provider or a partner. Examples of
services offered on this level can be revenue-through-use contracts or rental
agreements.

The shift to services constitutes a paradigm shift for how business is viewed
in the company. The interests of the service supplier, the distributors or
partners and the customers are joined in a win-win-win relation where the
financial incentives are better tuned to actual needs and opportunities. Rolls
Royce aircraft engine CorporateCare system (“Power by the Hour”) serves as
a good example where the customers (the airlines) get hassle-free flying hours
and Rolls Royce can optimize the complete chain of production, maintenance
and exchange.

On the highest level of servitization, the product business is completely
replaced by a service infrastructure. The infrastructure is implemented as a
platform, and often the service(s) and the platform are part of an ecosys-
tem. Examples of companies offering services on this level are Netflix, the
entertainment company that transformed from a DVD by mail distributor
to a streaming media service, and RackSpace, the cloud computing company
building much of its success on OpenStack – a platform for cloud computing
– which they released as Open Source software in 2010.

To further secure success of the platform that is used as a base for services,
partners and customers are often invited to collaborate. This is also a good
reason for offering the platform as Open Source software (as opposed to
a proprietary system) since it builds trust towards all participants. Services,
platform, tools, a market place and governance together make up an ecosys-
tem (see pattern Proc-10 Create and Govern Ecosystems to understand how
to set this up).

On the highest level of servitization, the product business
is completely replaced by a service infrastructure.
The infrastructure is implemented as a platform.

Service-based
Business

Prod-6

!

” “

58

Why it is important

Servitization and Open Source software is a perfect match since business
through services can be seen as the main mechanism to get paid for working
with Open Source on an advanced level. There are, of course, other good
reasons for moving to services, like:

• The cost structure is better for the customer (they pay for what they need
and the payment is distributed over time).

• If there is hardware involved, the utilization and reuse of it can
be optimized.

• Company resources are shared across customers.

• A service based business scales better, investments in new features or capa-
bility are moderate and adaption to changing market needs are simpler.

Considerations

Since the business models need to change when the company goes through
a servitization transformation, it becomes very important to understand the
different options for revenue creation. This is described in the pattern Org-10
Directed by Business Aspects.

On the highest level of servitization where there is no product business, it may
be challenging to get a paying customer base. The difficulties of selling fully
service based solutions are often underestimated. In preparation, it is impor-
tant for the company to answer questions like “Is the market ready to accept
the new value proposition?” and “Is the organization ready to deliver it?”

Data Driven methodologies, where data feedback loops are used to direct
development, become increasingly important for fast market adaptation and
to increase customer satisfaction. To secure success of such practices, all the
basic capabilities (patterns) of the organization, process and product types
need to be in place.

Further reading

• M. Turner, D. Budgen and P. Brereton, “Turning software into a service,”
in Computer, vol. 36, no. 10, pp. 38-44, Oct. 2003.

• World Finance, 8/3 2016, https://www.worldfinance.com/markets/
rolls-royce-is-driving-the-progress-of-the-business-aviation-market

• https://www.rackspace.com/

Related patterns

• Proc-10 Create and Govern Ecosystems

• Org-10 Directed by Business Aspects of Open Source

• Prod-4 Own Service Offerings

• Prod-3 Creating a Software Platform

• Prod-5 Open Source Driven Platform Innovation

“

?

!

59

Process
Patterns

60

Open Source software developers must follow the licensing con-
ditions. This means that the company must implement appro-
priate routines and tools to control compliance to Open Source
licenses.

What it covers

The Control Compliance pattern is about implementing the appropriate rou-
tines and tools in a company to control compliance to Open Source licenses.
This involves defining and communicating which Open Source licenses your
company should and should not use and how to manage those. License types
are often grouped according to the following:

• Blacklisted licenses – that will not be approved.

• Whitelisted licenses – that are generally OK to use, given the right context
(like given that there is no risk for incompatible licenses).

• Pre-approved Open Source systems – that supply basic functionality and
have been approved for usage across the product (like Google Android in
mobile devices).

A solution to track what Open Source components that are included must be
implemented to support the process. The objective is to have an inventory list
of all open source components and their respective licenses (also see pattern
Prod-2 Code Management).

The Open Source licenses have to be unconditionally followed if the com-

pany distributes Open Source licensed software. This covers any kind of
arrangement in which the software leaves the legal boundaries of a company,
including lending, selling or making available for free download.

The typical license obligations cover:

• Inclusion of copyright and license in the source code or product.

• Documentation or information found in the user interface, so that down-
stream users know the origin of the software and what their rights are.

• Disclaimers of warranty on behalf of the authors.

• Notices as to source code availability.

With a vast amount of different Open Source licenses, the compliance pro-
cess might seem overwhelming. However, in practice most organizations only
use a limited number of licenses. Furthermore, there are only two major li-
cense categories: “copyleft” that requires companies to make the source code
available; and “permissive” that applies minimal conditions, such as author
attribution. For more information on licenses read the separate Section on
Open Source and Copyright.

Why it is important

If the company breaches the license it may induce severe legal and business
risks such as:

The Open Source licenses have to be unconditionally followed
if the company distributes Open Source licensed software.Control compliance

Proc-1

!

” “

?

61

• Copyright and patent lawsuits: Copyright and patent damage compensa-
tions are dreadfully costly as intellectual property laws rule them. Intellec-
tual property laws award a compensation for breaches based on perceived
damages, whereas contract laws award a compensation based only on
actual damages.

• Injunctions, barring sales in a specific market: This consequence is
probably even more costly than damage compensations.

• Loss of control of own software and Intellectual Property: Legally
you can’t be forced to publish proprietary code under a copyleft license.
However, considering the high costs of possible recalls, redesigns and
compensations for copyright violation damages, it might be that the only
viable option in the end is to publish proprietary code anyway.

• A bad reputation that substantially hampers the business: Regaining
the trust and support of Open Source communities as well as the public
will literally take years. Potentially, this could be the costliest of all conse-
quences as you may lose decade long business opportunities.

The risks associated with not complying with Open Source licenses are often
the initial driver for companies to get their Open Source practices in order.

Considerations

Since the very start of the Open Source movement licensing and copyrights
have been a core ingredient. As there are business and legal risks attached
to using Open Source, most companies recognize the importance of being
compliant. This has led to that there is much information, good practices and
different tooling options readily available. The main challenge is to implement
a process that ensures compliance in an effective way.

Having a body that defines and governs the compliance process where all
necessary disciplines (legal, development and management) are represented
is key. This is one of the main areas covered by the Open Source Board (see
pattern Org-4). Included in their responsibility related to compliance is to
define what licenses can and cannot be used and decide on the inclusion of
new license.

The end-to-end compliance process contains a set of activities to be per-
formed to approve any new or updated Open Source component to be in-
cluded in a product. To make it effective it is vital that compliance is checked
already from the intake and maintained over the development cycle. Further-
more, it is recommended that most of the activities should be driven as close
as possible to the development as it is a natural part of the software architec-
tural design work and the considerations that come with them.

Since responsibility will be distributed in the company it is important to de-
fine a step-by-step process with clear roles and responsibilities. Subsequently
much attention must be paid to adoption including information, training and
coaching of development staff.

In addition to approval of each individual component, an inventory list of all
Open Source components and their respective licenses must be maintained.
See pattern Prod-2 Code Management for further details.

Further reading

• Haddad, Ibrahim (2016).” Open Source Compliance in the Enterprise”.
The Linux Foundation

• Haddad, Ibrahim, “Free and Open Source Software Compliance The
Basics You Must Know” , http://www.ibrahimatlinux.com/
uploads/6/3/9/7/6397792/0.pdf

Related patterns

• Org-1 Cooperation with Legal & IPR

• Org-2 Policies, Roles and Authorities

• Org-4 Open Source Board

• Proc-2 Control Intake

• Proc-5 Make-Buy-Share

• Proc-4 Control Contribution

• Prod-2 Code Management

!

“

62

To ensure effective management of legal, business and technical
aspects of Open Source software, it is important to control it al-
ready at the intake point. To this effect, a company should estab-
lish a decision process for intake of Open Source software that
can be triggered both by a deliberate request to include Open
Source and involuntary inclusions in code found by e.g. scanning
tools.

What it covers

To manage intake of Open Source software in a controlled way, a process
must be established. The process can be initiated by:

• An Intake Application Form in a checklist format (or in a tool) that can
be used if the intake is the result of a deliberate request to include Open
Source software.

• Scanning for Open Source software that either deliberately or involuntar-
ily may have entered the system in different types of code, for instance
through:

 � Proprietary code, either when new components are added to the system
or as part of changes made to existing code.

 � Developer downloads.

 � Code from 3rd party suppliers.

 � Software bundled with hardware.

The main roles involved in the intake approval process are typically the Intake
Officer, the OS Officer and Legal and IPR. Information that is needed as a
basis for a decision include:

• Description of the Open Source component and the community behind it.

• Intended usage and business case for the intake. This should also cover se-
curity aspects and a technical or architectural analysis of the Open Source
software component in the system context as background for understand-
ing license and IPR impact.

• IPR and License information, and possible conflicts.

• Responsible team.

This information should be supplied regardless of how the process was
initiated.

To guide the organization and the intake decision makers, there needs to be
a clear definition of which Open Source licenses are deemed to be OK and
Not OK to use (see pattern Proc-1 Control Compliance)

Why it is important

Open Source license requirements are activated at distribution, but the cost
of initiating compliance activities first when releasing is much larger com-
pared to doing it already at intake and maintain it through the development
life cycle. Late identification of incompatibilities between proprietary and
Open Source code or between different Open Source licenses can cause

Late identification of incompatibilities between proprietary
and Open Source code or between different Open Source
licenses can cause major rework or forced publication of
proprietary code.

Control intake

Proc-2

!

” “

!

63

major rework or forced publication of proprietary code (see pattern Proc-4
Control Compliance).

Another positive aspect of using a structured intake process is that it raises
the general awareness of both legal (compliance and IPR), business (through
a Make-Buy-Share analysis) and technical aspects of using Open Source
software.

Considerations

To avoid waste, the company should keep a list of common licenses and how
they are regarded with respect to intake:

• Blacklisted licenses – that will not be approved.

• Whitelisted licenses – that are generally OK to use, given the right context
(like given that there is no risk for incompatible licenses).

• Pre-approved Open Source systems – that supply basic functionality and
have been approved for usage across the product (like Google Android in
mobile devices).

The process should deal with full features or functions rather than code
snippets. This is not to say that identification of code segments that are
copied from Open Source software do not need to be dealt with, but instead
of pushing them through the process, they should be directed back to the
responsible team to be re-written or to be considered in the context of a
complete intake.

It is best to start out by applying the intake process in a strict way so that
everyone involved can get familiar with the Open Source concepts and what
is needed to take informed decisions. Decision mandate can be distributed as
the Open Source maturity level is increasing in the company, thus speeding
up the process.

By applying a Make-Buy-Share analysis (see pattern Proc-5) to all compo-
nents in its software system, a company will supply general direction to the
developers when it comes to where and how Open Source should be used
and intake will require less analysis and be more standardized. Similarly, Code
Management (see pattern Prod-2) will make the intake analysis simpler by

supplying information on Open Source and licenses in other parts of the
system. Remember that after intake, the component inventory needs to be
updated.

Further reading

• Ibrahim Haddad, The Linux Foundation (2018),
https://www.linuxfoundation.org/using-open-source-code/ [2018-03-20]

Related patterns

• Org-2 Policies, Roles and Authorities

• Org-4 Open Source Board

• Proc-1 Control Compliance

• Proc-5 Make-Buy-Share

• Prod-2 Code Management

• Proc-4 Control Compliance

?

“

64

Code review is a well-known practice in the software industry,
but often not consistently applied. However, having code reviews
as an institutionalized practice is instrumental to be able to grow
capability for any company being serious about Open Source
software.

What it covers

The Code Review pattern is about making code review a common practice in
the parts of the company that will have Open Source as part of their soft-
ware strategy.

Code review is about making systematic examination of computer source
code. It is intended to find mistakes overlooked in software development,
improving the overall quality of software. Reviews are done in various forms
such as pair programming, informal walkthroughs, and formal inspections.

Code reviews have been a well-known practice in software industry for
decades, and much information can be found on the subject, however code
review is often not consistently applied to ensure the intended benefits.

Why it is important

Code review is recommended for all software development contexts as it
enables early defect detection. It has e.g. proven to have significant impact on
evolvability, thus very well suited for software with long life cycle.

For any company being serious about Open Source, peer review is one of the
general practices that needs to be in place to grow Open Source capability
and maturity.

Initially it is important when Open Source software is included in the code
base, i.e. in the intake process where the code review will serve many purpos-
es:

• Ensuring that the code does what is expected and is fit for purpose.

• Validating that the code fits in the software architecture.

• Detecting errors, issues and vulnerabilities in the code.

• Analyzing the coding standards and rules applied in order to decide on if
and how to embed the Open Source software.

When starting to contribute software to an Open Source community, code
review is equally important. The objective for any contributor is to get the
code accepted as part of the next release. In order to achieve this, the func-
tionality naturally needs to add substantial value to the code base. However,
for the code to be accepted and for the company to be perceived as a serious
contributor, the code needs to be of high quality and adhere to community
practices. This will be very hard to achieve without serious code reviews.

For any organization being serious about Open Source,
peer review is one of the general practices that needs to be
in place.

Code review

Proc-3

!

!

” “

65

Further reading

• Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention:
Best Practices in Software Management. Wiley-IEEE Computer Society
Press. p. 260. ISBN 0-470-04212-5 Ganssle, Jack (February 2010). “A
Guide to Code Inspections”(PDF). The Ganssle Group. Retrieved 2010-
10-05.

• VDC Research (2012-02-01). “Automated Defect Prevention for Embed-
ded Software Quality”. VDC Research. Retrieved 2012-04-10.

• K. Wiegers “Peer Reviews in Software: A Practical Guide”

Related patterns

• Proc-2 Control Intake

• Proc-4 Control Contribution

• Proc-7 Create and Direct Communities

• Org-5 Open Source Community Culture

If your company has the ambition to further influence and control the Open
Source ecosystem, additional responsibilities will be added. This will in one
way or another include ensuring the quality of the Open Source software
releases covering also review and evaluation of other parties’ contributions.
Applying code reviews is instrumental in fulfilling those objectives.

Considerations

Since code review is a common practice, there is much information availa-
ble on how to go about it. One example is included in the Further Reading
list, “A Guide to Code Inspections”. If you have not done systematic code
reviews before, use available reference literature. as a starting point.

Make sure to decide on ambition, objective and method for your code re-
views. It is more important to get started with less ambition, be persistent and
learn as you go rather than spending much initial time in defining all details.

A general recommendation is not to include too much code in one individual
review session. Focus is likely to get lost and quality may suffer. A few hun-
dred lines of code per session is often seen as a suitable ambition level.

It is also recommended to investigate the potential in automating some of the
code review tasks. Automation has become a more widespread and has often
proven to save money as well as time.

?

“

66

A company that wishes to increase the benefits of the Open
Source software it is using, needs to do contributions and control
the content of these contributions. This pattern describes how to
manage strategies for, and approval of, contributions so they can
be done in a controlled and efficient way.

What it covers

To make it clear for all stakeholders in your development organization that
deal with Open Source code and that want to make a contribution to a com-
munity, a process needs to be established for how to get it approved. This
process should entail:

• Classification of contributions in e.g. Trivial, Medium and Major contribution:

 � A Trivial contribution could for instance be a bugfix, and approval
mandate for such contributions should be distributed.

 � Medium level contributions where expert consultation is recommended
could for instance go through the Open Source Board.

 � Major contributions could be complete modules or frameworks involving
complicated IPR deliberations requiring executive management decision.

• Roles – defining what Open Source roles and forums in the company are
involved in the decision making around contributions (like legal and IPR,
and the OS Board).

In addition to the approval process, a company should also formulate a con-
tribution strategy for the different Open Source components it is using. This
will be a further guidance for developers so that they don’t spend unnecessary
time and effort on contributions that are not in alignment with the strategic
ambitions and are thus not likely to be approved. By looking at the Open
Source components in terms of factors like their business impact and techni-
cal complexity (e.g. through the CAP model that is presented in the Further
Reading material), such a strategy can range from 1) stating that only intake
and bugfixes are relevant, to 2) having an active contribution strategy for a

It must be clear to all developers within an organization what
the strategy for their Open Source components is and how the
approval process for contributions works.

Control
contribution

Proc-4

!

” “

Contribution strategy chart

Control complexity

Bu
si

ne
ss

 im
pa

ct
/U

ni
qu

en
es

s

Low High

High

Standard

Platform/Leverage Strategic

Product/Bottleneck

Cost
focus

TTM
focus

Control
focus

Strategic
alliances

&
investments

67

component, and finally 3) deciding to take a leading role in a community. The
introduction of a contribution strategy should also be reflected in the policy
on contributions, see Pattern Org-2 Policies, Roles and Authorities.

Why it is important

It is through contributions that a company can gain influence in Open Source
communities. Thus, it must be clear to all developers within a company what
the contribution strategy for their Open Source components is and how the
approval process for contributions works. It’s fair to say that control of con-
tributions is a central capability that needs to be established for a company
that has taken a strategic decision to work with Open Source.

Considerations

When setting a contribution process, it is important to secure that it is swift,
i.e. contains no unnecessary steps and has as short lead time for decision as
possible. If this cannot be assured, you can be certain that your competitors
will do contributions instead of you, your developers will lose interest and
engagement and an opportunity to influence the Open Source communities
is lost.

The Open Source contribution strategy defines the level of engagement and
the process defines what approval steps to take depending on type of con-
tribution (Trivial, Medium, Major). Generally, you should keep the decision
authority (and handling of the different steps) in the process as hierarchically
low and close to the developers as possible.

The contribution strategy should evolve along with the Open Source maturity
in the company. Thus, the company is likely to initially only have a strategy
to contribute bug fixes, moving to functionality contributions in areas where
there could be cost reduction and shared development and finally identifying
central components with a much more far-reaching contribution strategy
when the company is ready for it.

The pattern Org-6 Grow Industry Experts includes a few suggestions on
how to acknowledge and improve the level of contributions.

Further reading

• Linåker, Johan & Munir, Hussan & Wnuk, Krzysztof & Mols, C.E. (2017).
Motivating the Contributions: An Open Innovation Perspective on What
to Share as Open Source Software. Journal of Systems and Software. 135.
10.1016/j.jss.2017.09.032.

• https://opensource.guide/how-to-contribute/

• https://mashable.com/2011/03/30/business-open-source-communities/
#PaoXXEVLwuqj

Related patterns

• Org-2 Policies, Roles and Authorities

• Proc-5 Make-Buy-Share

• Org-8 Collaborative Product Strategy

• Proc-7 Create and Direct Communities

• Prod-2 Code Management

!

“

?

68

A software product consists of many components. By doing a
Make-Buy-Share analysis, a company can establish a holistic and
strategic view of which components are suitable for own develop-
ment, 3rd party solutions, out-sourcing and Open Source software.

What it covers

All companies with complex software-intensive products need to evaluate the
different components in the system. Per component this means assessing:

Is it:

• A commodity (thus not adding to the attractiveness of the product)?

• A qualifier (component adds specific value to the customer, but technology
is not unique)?

• A differentiator (“only we can do it”)?

Should we:

• Make the component ourselves?

• Buy it?

• Share it (use Open Source)?

The figure shows the Make-Buy-Share matrix that may be helpful as a way
to understand what strategy is relevant for each of the cases. The Make-Buy-
Share evaluation should not only be done once, but needs to be updated as
the system evolves over time.

As guidance to the Make-Buy-Share decision (especially for understanding
if a component is differentiating, a qualifier or commodity), the following
parameters can be considered:

• Availability (of a certain feature or functionality): What 3rd party and
Open Source solutions exist?

• Cost: What is the cost of development and maintenance for a component?

• Criticality: How strategic is the component for the product business in
the longer term?

To become more cost effective by ensuring that you can focus
properly on the differentiating components while sourcing off-
the-shelf solutions in areas of less strategic value and use
Open Source software for commoditized parts of the system.

Make-Buy-Share

Proc-5

!

”
“

Commodity

Qualifier

Differentiator

Buy ShareMake

Keep market
advantage

Most cost
effective to use

open source

Market
advantage

lost

Area of
innovation

interest

No need
to re-invent

the wheel

Why pay for
what is freely

available?

No
dependency
on external

parties

Most cost
effective to
use existing

software

Not cost
effective

69

• Competence: Can current and future staffing needs be covered?

• Resource load: (Somewhat connected to cost and competence.) Does re-
source load for a specific component often reach critical levels thus risking
delivery and quality?

• Complexity: What is the level of component complexity in terms of
dependencies within the system and how difficult the technology is to
acquire, develop, and control.

• Marketing: How marketable are the product features or functions?

Why it is important

One of the main reasons to apply the Make-Buy-Share strategy to your soft-
ware system is to become more cost effective by ensuring that you can focus
properly on the differentiating components while sourcing off-the-shelf
solutions in areas of less strategic value and use Open Source software for
commoditized parts of the system. With this strategy, you will also be able to
increase innovation across the product through better-focused own develop-
ment and joint development of qualifier and commodity components.

In addition, Make-Buy-Share decisions will guide the Open Source intake
(pattern Proc-2) process by mapping the components in the system where
Open Source software is wanted or unwanted.

Considerations

For the Make-Buy-Share analysis to become relevant, it is important to in-
volve people like architects and product managers from in the company that
have the right holistic mind-set and can judge the different parameters in a
reasonably objective way.

A Make-Buy-Share mapping constitutes a static view of the system and needs
to be continuously updated. To secure that this happens, it can be made part
of the system governance structure. Looking at the figure, over time, compo-
nents tend to move down along the y-axis and to the left along the x-axis.

Since the software industry is moving very fast, the input from the compo-
nent owners to the Make-Buy-Share decision process is vital. Availability
through 3rd party solutions or Open Source software will increase, and un-
derstanding of communities and crowd patterns (see pattern Proc-9 Crowd
Based Requirements) may provide valuable insights. The Collaborative Prod-
uct Strategy way of working (pattern Org-8) strengthens this communication
within a company.

When looking at the parameters that affect the decision to Make-Buy-Share,
especially the discussion around Criticality may become very subjective when
involved stakeholders are trying to establish if a certain component adds cus-
tomer or business value. In this case, the use of qualitative data (e.g. surveys)
or quantitative data (e.g. usage statistics) can add further substance.

Further peading

• K. Petersen, D. Badampudi, S. M.A. Shah, K. Wnuk, T. Gorschek, E. Pap-
atheocharous, J.Axelsson, S. Sentilles, I. Crnkovic, A. Cicchetti, “Choosing
component origins for software intensive systems: In-house cots oss out-
sourcing or services? a case survey” Transactions on Soft. Eng.-in print 2017

Related patterns

• Org-2 Policies, Roles and Authorities

• Prod-1 Modularization and Control APIs

• Proc-2 Control Intake

• Proc-4 Control Contribution

• Org-8 Collaborative Product Strategy

• Proc-7 Create and Direct Communities

• Proc-9 Crowd-based Requirements

?

!

“

70

Having frequent software releases is strongly associated with
concepts such as Continuous Delivery, Agile and DevOps, and
many Open Source software projects have adopted a frequent
release strategy. In order to ensure return on the investments
made in Open Source, a frequent release strategy aligned with
the release cycle of the Open Source software should be adopted.

What it covers

The Frequent Releases pattern is about releasing software to users on a
frequent basis. It should be a common practice at least in the parts of the
company that have Open Source as part of their software strategy. Separate
parts of the company may have different types of solutions, where the Open
Source potential varies. Also, if a company has one product, it may be possi-
ble to have independent release strategies for different parts of the product.
This will however put further requirements on structure e.g. through decou-
pling of the software components. Read more in patterns Prod-1 Modulariza-
tion and Control APIs and Prod-2 Code Management.

The Frequent releases pattern covers ensuring an adequate technical envi-
ronment, implementing streamlined practices and providing the necessary
tooling. One important step is to ensure that the production environment is
set up and managed in a way that removes limitations in the release process.
It often makes sense to assess virtualization of the production environment,
e.g. having the environment in the cloud, as a part of preparing your infra-
structure for frequent releases. Most important, however, is to apply good

practices to ensure a stable, consistent and available environment. This covers
e.g. version control, virtualized test of infrastructure and continuous delivery.

Furthermore, the actual release process must be effective including clear
and delegated authority to decide on releasing software. This is more easily
achieved if development is organized around small teams delivering more
agile releases. To become successful the above must be supported by as much
automation as possible of especially testing and the actual release itself. In es-
sence, question all steps in the process and see what steps can be automated.

Why it is important

Many software organizations are still working with large releases with many
bundled changes, however many have also started to apply frequent releases
as part of their overall software strategy.

Their main reasons relate to increased speed and business flexibility through:

• Immediate market, user or community developer feedback.

• Early feedback on quality and stability.

• Less cumbersome release process.

The common adoption of frequent releases in Open Source projects usually
involve users all over the world who eagerly download each new version as
soon as it is released and test it as thoroughly as they can. For this reason, it
is easily understood that any company having the ambition to play a key role
in Open Source adoption, will need to implement frequent releases as a key
feature in their software.

In essence, question all steps in the process and see what
steps can be automated.Frequent releases

Proc-6

!

” “

?

71

However, already when making the first inclusions of Open Source soft-
ware in deliveries, there will be additional benefits in working with frequent
releases. It is likely that new versions of Open Source software will be made
available on a regular basis. If the company wants to get full benefit from
the investments made in Open Source, it should have a release cycle that is
aligned with the applicable Open Source projects, otherwise opportunities of
having the best software in the market will get lost.

Taking the step to also become a contributor of software to Open Source
communities will increase the importance of having the ability to release soft-
ware on a frequent basis. The key reason to contribute software is to get the
contributed version accepted by the community and thus becoming a stand-
ard. If you are not able to contribute your software swiftly to the community
most likely someone else will get ahead of you.

Considerations

The release strategy is not something that can be derived separately, but
must be put in context of the overall software process, software strategy and
corporate culture. Since the long-term impact of these changes may be pro-
found, it is recommended to run an improvement project with the necessary
change management and adoption processes. The company’s release strategy
should also be aligned with Open Source communities’ release strategies. This
must be done with care and special attention must be paid to factors such as
what are the Open Source communities of highest importance.

This is an area with a lot of terminology. Agile, DevOps, frequent releases,
continuous integrations and flow are examples of related words and con-
cepts. They will all mean different things to different people and different
organizations. To avoid confusion, make clear to yourself what you want to
do and what you mean.

Many companies have already started on this journey. Furthermore, many
practices are defined and are readily available and the tooling for automation
is catching up. In short, if you are serious about implementing frequent re-
leases, there are proven approaches for you to use and become successful.

Further reading

• Antonio Cesar Brandão Gomes da Silva, Glauco de Figueiredo Carneiro,
Fernando Brito e Abreu, and Miguel Pessoa Monteiro (2017); Frequent
Releases in Open Source Software: A Systematic Review; MDPI, Basel,
Switzerland.

• A. Deshpande, D. Riehle, “Continuous Integration in Open Source
Software Development.” Open Source Development, Communities and
Quality. OSS 2008. IFIP – The International Federation for Information
Processing, vol 275. Springer, Boston, MA

Related patterns

• Prod-1 Modularization and Control APIs

• Prod-2 Code Management

• Proc-4 Control Contribution

• Org-5 Open Source Community Culture

• Proc-7 Create and Direct Communities

!

“

72

Many software-intensive companies own software assets that
are of general interest and high potential but do not contribute
to the product differentiation. These assets are candidates for
creating Open Source communities around, with the objective to
harvest the advantages of community involvement e.g. increased
innovation, decreased cost and time to market.

What it covers

There are some preparations to do before a community can be created. First
and foremost, the company needs to identify good candidates to create an
Open Source community around. The stakeholders must also find relevant
responses to questions like: 1) what are the reasons for doing it? 2) how much
(of the code) should be included?, 3) is there executive buy-in and budget for
driving a project in terms of time, resources, costs, infrastructure etc.? and 4)
is the project interesting for others and what participation can be expected
from the start? All of this should be summarized in a project mission and a
project plan.

After an internal agreement has been reached on creating a community, there
needs to be a legal review to consider things like the impact on IPR, select-
ing an Open Source license for the code to be released, documenting license
requirements, considering trademarks and deciding if contributor agreements
are needed or wanted.

Along with the legal review, there are also several technical activities to
execute before launch, for instance:

• Defining the governance structure and the basic processes for
the community.

• Cleaning the code from dependencies and ensuring a consistent code style.

• Adding license and copyright information in the code library and files.

• Setting up the infrastructure including code repository, test environment
and issue reporting. The infrastructure (like the tool chain) also needs to be
checked for possible proprietary elements that may hinder participation.

• Creating communication channels like forums, wikis and
social media channels.

• Provide relevant documentation, like community guidelines and usage
examples.

When the roles that are relevant for governance have been assigned
(e.g. a community manager or maintainer), the community is ready to estab-
lished and the first development activities and contributions may take place.
To get going as quickly as possible, use established best practices from similar
communities, e.g. a kick-off event.

One of the main benefits is the sheer manpower and
usage of a solution that can be mustered in a community.
This will accelerate innovation, decrease time to market
and improve quality.

Create and direct
communities

Proc-7

!

”
“

73

When the community is up and running and others have started to join, it is
important to consider the obligations that follow with being a driver:

• Communication: Make sure that all changes going forward are commu-
nicated properly. If decisions are made in closed groups or meetings, these
should be posted publicly so everyone in the community has access to the
same information.

• Taking control: Some contributions will be out of scope, create unnec-
essary work for others or simply not be up to standard. These need to be
gated in a polite and respectful way.

• Mentoring: Helping and guiding newcomers through the different pro-
cesses in the community, not least the contribution flow.

As the community develops over time there will be new challenges. Some
partners may want to drive the code in a different direction, which opens the
question of the overall mission. Allowing forking or offering APIs and cus-
tomization possibilities may be alternatives. To maintain a continuous healthy
discussion in the community, it is a good idea to encourage and facilitate
possibilities to meet face-to-face.

Why it is important

There are several reasons for why starting and maintaining an Open Source
community can be the right thing to do. One of the main benefits is the sheer
manpower and usage of a solution that can be mustered in a community. This
will accelerate innovation, decrease time to market and improve quality. If
the Open Source project draws enough external attention, it will also help to
share (and if wanted: reduce) development cost.

Another aspect of creating a community is the engagement it opens up for –
with people sharing your mission, with partners or even with customers. This
will, for instance, give opportunities for your company to identify potential
new employees and for your customers to do self-support through adapting
or correcting code, thus shortening lead-time. Clearly a win-win situation.

Considerations

Starting and maintaining an Open Source community is no simple task, so
therefore it is healthy to do a proper evaluation by asking yourself:

• Will your company actually manage to drive the Open Source project?
Assess cost and capabilities.

• Can the same objectives be reached by joining an already existing project?
Look around for existing alternatives.

• What is the probability that others will really join the project? Be honest
with yourself.

Although participation in an existing community should be the first choice
since it gives most of the wanted advantages (like speed, innovation power,
quality), it doesn’t necessarily offer the possibility to drive the direction of the
project.

It is important to hold community culture in high regard. Things like “Release
early, release often” suggest that:

• Shipping trumps perfection – to get feedback on new ideas or problems
when there is still room for flexibility.

• Small increments rather than big bang releases – to maintain speed, visibili-
ty and improve debugging possibilities.

• Show by example and enforce code of conduct to maintain a good com-
munity culture.

Finally, make sure that focus is kept – i.e. keep down the number of active
discussion threads you are driving to avoid fragmenting the community mis-
sion. And remember not to take yourself to seriously.

?

!

74

Further reading

• G. von Krogh, S. Spaeth, K.R. Lakhani, “Community, joining, and special-
ization in open source software innovation: a case study”, Research Policy,
Volume 32, Issue 7, 2003, Pages 1217-1241

• Nicolas Ducheaut, “Socialization in an Open Source Software Community:
A Socio-Technical Analysis”

Related patterns

• Org-7 Developer Program

• Org-5 Open Source Community Culture

• Org-6 Grow Industry Experts

• Org-8 Collaborative Product Strategy

• Proc-10 Create and Govern Ecosystems

• Prod-3 Creating a Software Platform

“

75

Companies working with Open Source establish industry-wide
collaborations to grow their business, increase revenue and con-
tribute to creating standards. The collaborations can be centered
around a software platform or an ecosystem.

What it covers

The industry wide collaborations pattern is about actively seeking collabo-
ration partners that can help to grow your business, expand your product
offering or reach new markets with your Open Source software platform or
ecosystem.

From an engineering perspective, one starting point for identifying potential
collaborations is through the contributions that are made to an Open Source
project that the company is engaged in. Accepted contributions could trigger
discussions between developers about possible collaborations. Another strat-
egy is to publish a list of open problems or challenges associated with a given
Open Source platform or technology online, and check if responses can
point out collaboration partners.

However, since the objective is mainly business oriented, managers and
leaders in the company need to take the lead in reaching out and establish-
ing collaborations. This can be done through the contacts and relations they
have created thanks to engagement in Open Source platforms or ecosystems.
Management involvement is important since developers often have little or
no decision authority in establishing business-based collaborations or

discussing details about value creation and revenue sharing. The Open Source
context also lowers barriers between companies since is diffuses potential
IPR conflicts.

Why it is important

The main benefits for a company to establish industry-wide collaborations
include:

1. Usage of the Open Source platform or ecosystem is expanded outside
the company’s boundaries and current markets, with a potential to grow
business and increase sales.

2. They provide a way to find complementing knowledge or experience and
to realize new business ideas with the help of partnerships.

3. They create a win-win situation where collaborating partners learn from
each other and get to understand each other’s business environment, op-
portunities and constraints. Big players with a strong influencing power can
establish their solutions as industry-wide standards. Smaller players can join
with other small players to challenge the big players together.

4. Collaborations are one of the driving engines for transforming an Open
Source ecosystem into an industry-wide standard.

When you are a big player in a given business, you have strong
influencing power to establish your solution as an industry
wide standard. When you are a smaller player, you can join
with other small players to challenge the bigger players.

Industry-wide
collaborations

Proc-8

!

”
“

!

76

Considerations

The main consideration when starting a collaboration is to understand who
benefits from it and how to co-create value and share revenue. A company
will need to carefully select its partners since these decisions usually have
long-term implications.

Although there may be a healthy reluctance towards sharing too much with
others, there is also the fact that high entry barriers will eliminate many po-
tential collaborations. Thus, there is a need to find the right balance between
openness and exclusiveness.

When setting up collaboration around an Open Source project, communica-
tion channels and routines for knowledge exchange and idea discussions need
to be established. Some examples include notifications about new contribu-
tions and their potential in an Open Source ecosystem context, organizing
hackathons for developers interested in a given technology or organizing
development days.

Finally, regulatory activities may be needed when you establish industry-wide
platforms and solutions. This happens when entering domains where compli-
ance and certification towards standards and market regulations are required.

Further reading

• M. A. Storey, A. Zagalsky, F. F. Filho, L. Singer and D. M. German, “How
Social and Communication Channels Shape and Challenge a Participa-
tory Culture in Software Development,” in IEEE Transactions on Soft-
ware Engineering, vol. 43, no. 2, pp. 185-204, Feb. 1 2017. doi: 10.1109/
TSE.2016.2584053

• Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. “Two case
studies of open source software development: Apache and Mozilla”. ACM
Trans. Softw. Eng. Methodol. 11, 3 (July 2002), 309-346.

• https://www.openautoalliance.net/#about

Related patterns

• Proc-4 Control Contribution

• Proc-7 Create and Direct Communities

• Proc-10 Create and Govern Ecosystems

• Prod-5 Open Source Driven Platform Innovation

?

“

77

Crowd-based Requirements Engineering enables harvesting
external sources of requirements and ideas discussed in Open
Source communities. It also helps to extract requirements from
the product usage data. It also enables more time efficient re-
quirements gathering as a large of requirements discovery is
automated and done by the crowd. This pattern is on level 4 as it
improves requirements engineering efficiency and effectiveness
based on the benefits from Open Source community creation,
governance or participation. It expands the make-but-share
analysis by understanding the requirements and future needs for
commodity, qualifier and differentiator components.

What it covers

The Crowd-based Requirements Engineering pattern is about creating mech-
anisms to harvest external opinions from the crowd – a large set of users
and Open Source community member who continuously provide feedback.
Crowd-Based RE is based on the crowdsourcing principles in which individ-
ual or organizations use contributions from Open Source communities to
obtain ideas about future needs for the products.

Companies working with Open Source ecosystems (both contributing and
governing them) are exposed to large amount of information (business intel-
ligence, product usage data, reviews and other forms of feedback) and data.
The data is heterogeneous, multi-sourced and challenges requirements

capturing and analysis activities. Utilizing Crowd-based Requirements Engi-
neering means mobilizing as many crowd members as possible to commu-
nicate and discuss their needs regarding the evolution of existing software
products.

Requirements Engineering for Open Source is based on informalisms for
describing Open Source requirements and what developers are currently
working on in the Open Source projects. Informalisms are informal, online
documents that often are created after the implementation is ready and often
capture the detailed rationale, contextualized discourse, and debates for why
changes were made in development activities, artifacts, or source code files.

The main benefits for organization to use Crowd-based Requirements Engi-
neering include:

1. Mobilizing many crowd members to provide continuous feedback and
suggestions regarding potential product requirements and main issues
(complement market predictions).

2. Minimizing the cost of obtaining feedback and recruiting potential users
and enabling software application usage and context monitoring (increased
efficiency of requirements engineering).

3. Reducing the feedback time between introducing a new requirement to
receiving customer feedback about it and receiving just-in-time feedback
from multiple channels anytime.

Utilizing Crowd-Based requirements engineering
means mobilizing as many crowd members as possible to
communicate and discuss their needs regarding the
evolution of existing software products.

Crowd-based
requirements

Proc-9

!

”
“

78

4. Scaling up requirements elicitation in a cost-efficient manner and ensuring
that multiple-opinions are considered. Supporting requirements triage and
decision making with continuous opinions and sources of requirements.

5. Automating or semi-automating work-intensive parts of requirements elic-
itation, triage and pre-screening and giving more time to analyze the results
of this screening and make decisions that will benefit products.

6. Creates a platform for requirements engineering process automation and
data-driven requirements discovery.

Why it is important

In traditional software engineering, business analysts identify user or market
needs (intelligence), synthesize a set of features and functions that satisfy
those needs as requirements specification (design), and prioritize and package
these requirements based on business strategies and constraints (choice). This
process is often not effective and is not sufficiently scalable as it funnels a
small amount of information on the users’ needs through a limited capacity
that struggles to associate and recombine that input to provide better and
more innovative products.

Crowd-based Requirements Engineering utilizes the potential that the crowd
brings, and the informal feedback provided by the crowd to find valuable
product requirements. A motivated crowd provides continuous feedback that
improves requirements validation and just-in-time feedback loop and allows
for large-scale experimentation (early adopters, technology experts). The
crowd helps to reduce requirements validation time and cost.

Considerations

Automating crowd data analysis is critical here and includes defining: 1) what
data sources are relevant, 2) how to filter this data and injects to company’s
requirements processes and 3) how to synchronize with internal product
strategies.

Further reading

• https://en.wikipedia.org/wiki/Crowdsourcing.

• Scacchi W. (2009) Understanding Requirements for Open Source Software.
In: Lyytinen K., Loucopoulos P., Mylopoulos J., Robinson B. (eds) Design
Requirements Engineering: A Ten-Year Perspective. Lecture Notes in Busi-
ness Information Processing, vol 14. Springer, Berlin, Heidelberg.

• E. C. Groen et al., “The Crowd in Requirements Engineering: The Land-
scape and Challenges,” in IEEE Software, vol. 34, no. 2, pp. 44-52, Mar.-
Apr. 2017.

Related patterns

• TBD

?

!

“

79

Creating and governing ecosystems is about creating commu-
nities of communities based on Open Source involvement. An
ecosystem requires an Open Source based platform and a mar-
ketplaces where additional features and services can be added. A
successful ecosystem can become an industry-wide standard that
will accelerate product innovation, expand market penetration
and enable additional revenue streams.

What it covers

2. Players - the Open Source platform is driven or used by different types of
ecosystem players (like platform leaders, niche players and bridge players),
vendors, customers and external users and actors. The platform leaders are
typical orchestrators (responsible for governance) that largely determine
the growth of an ecosystem.

3. An established governance model – with an explicit governance struc-
ture and processes, ecosystem orchestrators and communication and
contribution channels. Platform leaders use the governance model to grow
the ecosystem and ensuring that it reaches its strategic goals.

4. A market place – many ecosystems are centralized around a market of
extensions (like app stores or app markets). This provides the ecosystem
with a well-defined market, which attracts strong players. A defined mar-
ket place makes it simpler to identify the key actors and the relationships
between them. The market place can also supply additional hardware and
software services to the platform.

5. Lock-in mechanisms – a mechanism that prevents the ecosystem players
from switching to competing Open Source platforms too easily. Switching
should be possible but associated with significant technological or financial
costs. This helps to ensure that prominent players stay with the platform
and help to develop it.

6. Data access mechanisms and policies – this includes data probe access
to source code and code interfaces and rules to accessing and sharing data
generated by the executed code. Data access is important for creating mar-
ket extensions (apps) that can work on data and reuse platform code.

Open Source ecosystem give several benefits from Open
Source involvement, including value co-creation, contributions
and sharing development resources and creating additional
value streams for the platform or marketplace owner.

Create and govern
ecosystems

Proc-10

!

”
“

Software Platform

Market placeTools

ServicesPlayers

 The main elements of the Open Source ecosystem are presented in the fig-
ure. An Open Source ecosystem is a community of communities that has the
following key elements:

1. An Open Source platform – a common Open Source code base that has an
associated community. (Also see pattern Prod-3 Creating a Software Platform)

80

7. Revenue sharing mechanisms – includes defining symmetric and asym-
metric revenue sharing models for ecosystem leaders and other players. This
can for instance be per-usage revenue models or advertising-based revenue.

Infrastructure and communication channels established during the commu-
nity creation to support participation need to be maintained over time by
the ecosystem governance. If required, ecosystem specific infrastructure and
tools need to be expanded. The general state of the ecosystem can be visual-
ized by health measures that should be introduced and regularly evaluated by
the ecosystem governing company.

Transparency and a clear definition of the ecosystem and its governance
structure should also be derived and maintained. Without a shared under-
standing of the ecosystem it is very difficult to have a clear and open ecosys-
tem strategy. Additional governance aspects include coordination of con-
tributions to other ecosystems, formalization of entry requirements for new
participants and creating customer and partner directories.

Why it is important

A company that governs an Open Source based ecosystem has the opportu-
nity to steer development effort towards its business agenda and can there-
fore partly focus internal development resources on creating (proprietary)
differentiating parts.

By creating ecosystems, a company accelerates product innovation for the
products extracted from the software platform. It also gives the company a
competitive advantages by helping to establish a market position or increase
the penetration of a given market, to a level where it can act as a powerful
market disruption mechanism.

Open Source ecosystems enjoy the general benefits from Open Source
involvement, including value co-creation, contributions and shared develop-
ment cost and creating additional value streams for the platform or market
place owner.

An ecosystem which adheres to the transparent and collaborative principles
of Open Source is not only a powerful knowledge exchange platform, but
the underlying software platform has a possibility of becoming an industry
standard. This enables penetration of new markets and business areas.

Considerations

The biggest concern for a company that is taking the role as a governing
organization, is to understand that Open Source ecosystem creation is a long
term commitment. Internal industry experts need to be assigned roles in the
ecosystem governance structure and this will be an ongoing effort for as long
as the ecosystem exists. Without long-term management support, the ecosys-
tem communities will not receive sufficient support to grow and mature.

Additional considerations include:

• Understand your business environment including:

 � How your current software or hardware services interact with other
stakeholders.

 � How to create a platform and to understand if this platform can be-
come interesting for external players.

• Having a stable platform with established interfaces and creating a com-
munity culture are mandatory prerequisites. Additionally, supporting Open
Source collaboration mechanisms in the governing organization is manda-
tory for a successful Open Source ecosystem launch and growth.

?

!

81

Further reading

• Baars A., Jansen S. (2012) “A Framework for Software Ecosystem Gov-
ernance”. In: Cusumano M.A., Iyer B., Venkatraman N. (eds) Software
Business. ICSOB 2012. Lecture Notes in Business Information Processing,
vol 114. Springer, Berlin, Heidelberg

• Slinger Jansen, Sjaak Brinkkemper, Michael A. Cusumano. 2013. “Software
Ecosystems: Analyzing and Managing Business Networks in the Software
Industry”. Edward Elgar Publishing, Incorporated.

• Jansen, Slinger, and Michael Cusumano. “Defining Software Ecosystems:
A Survey of Software Platforms and Business Network Governance.”
Proceedings of IWSECO (2012): 41.

Related patterns

• Org-6 Grow Industry Experts

• Proc-7 Create and Direct Communities

• Org-9 Self-managed Organization

• Prod-3 Creating a Software Platform

• Proc-8 Industry-wide Collaborations

• Org-10 Directed by Business Aspects

• Org-11 Authority in Open Source

“

82

Anti
Patterns

83

Many companies will get stuck in thinking that only using Open
Source fulfils all their needs and there is little benefit compared
to cost and effort in active participation in Open Source commu-
nities. They have still not realized that passive consumption of
Open Source is a flaw and need to continue their transformation
to better leverage on Open Source and shun the “Use, but not
contribute” trap.

The trap

A common misconception among companies that have started to include
Open Source software as part of their solution is that they stick to only using
it. They are satisfied with just getting access to what is seen as cool and free
software that solves a problem. Thus, they will refrain from doing contribu-
tions and more generally to interact with Open Source communities. Either
this option is not considered at all or it is regarded as being complicated and
costly. However, in doing so they will need to face up to facts like:

• They will have no insight in the direction of the Open Source communities
and important new releases will always come as a surprise.

• They will not able to influence the communities with requirements from
the outside (communities are driven by an internal “itch”).

• The large communities generally move fast (e.g. Linux: 9000 commits/day,
Chrome release cycle: 6 weeks).

The result of not contributing is that the company will accumulate a lot of
own patches to the Open Source software components in their system to
fix issues or to tailor them to their specific product needs. Together with the
above-mentioned facts this leads to:

• Patch management, which will slow down development when new versions
of Open Source software need to be integrated:

 � The extra effort required due to patches may even discourage from
keeping Open Source software components updated – at the risk of
missing important bug and security fixes.

• Puts the full burden of maintaining patches over time on the company
itself.

• The company cannot be part of community innovation and is not likely
to be open to adjusting its roadmaps in accordance with the development
direction in the communities. This constitutes missed opportunities.

• Over time, the collection of patches will become more of a liability than
an asset. As the Open Source communities release new and better versions,
the investments in patches could be made obsolete and worthless.

This is a trap that many companies end up in. Thus it is vital to turn it all
around and look at the benefits that can be gained by opening up for contri-
butions and the effects this will have on the development organization.

An active Open Source contribution strategy has
considerably larger advantages than disadvantages should
be shared through communication and training.

Shun the “use, but
not contribute” trap

Anti-1
” “

!

84

How to get out of the trap

The key to getting out of the trap lies in understanding the importance of
contributions and participation in Open Source communities. There are three
major reasons for contributing:

• It reduces cost of maintenance:

 � Once a patch has been contributed, it will be maintained by the
community.

 � Your contributed patches force competition to re-adjust their set of
patches, thus inflicting them a cost.

• It improves time to market:

 � With fewer patches to maintain, development can focus on differen-
tiation and can more easily keep Open Source software components
updated.

 � By participating actively in the Open Source communities that are vital,
insights on where they are headed will be gained, allowing for adjust-
ment of requirements. This reduces the risk for late and costly redesigns
that can delay product launches.

• It opens the possibility to influence communities:

 � By letting your engineers climb the meritocracy ladder of Open Source
communities, they will create relationships that can leverage your ideas
and innovations.

 � Eventually this may lead to an influencing position that can help to drive
your business agenda further.

 � This must, however, not be pursued to the extreme. A community will
not give up control to members that only work for their own best interest.

The understanding that an active Open Source contribution strategy has
considerably larger advantages than disadvantages should be shared through
communication and training. There may, however, still be reluctance towards
doing contributions since it is seen as giving away software that is perceived
to have high value, and product owners may be concerned about losing

control of the code. The way forward lies in defining what strategy to use for
the different components in the system (as described in the pattern Proc-5
Make-Buy-Share) and to make use of the advantages achieved from active
Open Source participation (as shown in the pattern Org-8 Collaborative
Product Strategy). Also, patches in Open Source software components very
rarely retain value over time.

Apart from supplying training and defining contribution strategies, the devel-
opment organization will need clear guidance on how do contributions (as
presented in the pattern Proc-4 Control Contribution). Thus it will finally be
able to free itself from the trap of “using but not contributing”

Further reading

• J. Linåker et al. “Motivating the Contributions: An Open Innovation Per-
spective on What to Share as Open Source Software”, Journal of Systems
and Software, 2017

Related patterns

• Proc-5 Make-Buy-Share

• Proc-4 Control Contributions

• Org-8 Collaborative Product Strategy

“

!

Acknowledgements

Scaling Management Framework

The Industrial Open Source patterns builds on results created in the Scalare project (www.scalare.org), a pan-European effort between industry and academia in Sweden,
Ireland, Germanya and Spain. The project was supported by Enterprise Ireland, Science Foundation Ireland and the Swedish innovation agency, Vinnova.

Orion project

The work is partially supported by a research grant for the ORION project (reference number 20140218) from The Knowledge Foundation in Sweden.

in-house

3rd party

Open Source

Industrial Open Source
A new wave of Open Source development being led by industrials
and companies are growing with open source at the heart of their
business. These companies are using Open Source to build commercial
products. They are creating new business models that are allowing them to
succeed in emerging business domains using technologies such as AI, Cloud
and IoT. Consequently, today’s industry faces a complex environment where
systems are no longer primarily built on proprietary development,
but on a mix of in-house, third party and open source.
This is a handbook on how to create and drive an
Open Source Program in an industrial setting.

