
What’s cooking in the industry?

Trends in software
 development

?
What drives development?

RECIPIES

Adapted Agile
All for Agile, Agile for all

 Continuous Delivery
 Small streams make a big river

Industrial Open Source
Open up to Open Source

Secure Development
Better secure than sorry

Servitization
From products to services

 Data Driven Development “The customer is always right”

We are living in exciting times for software development. Software is becoming an increasingly important part
of all businesses. Applications such as autonomous driving, AI and virtual reality have become part of our reality.
Only a few years ago we regarded them as science fiction. New entrants wait just around the corner with innovative
software solutions that will further disrupt existing markets. We can expect more from new technology areas
like Cloud, IoT and Big Data. No doubt all organizations are challenged by this fast-moving, global marketplace.
In this context, how is the Swedish industry facing up to the challenges? We wanted in particular to know:

What challenges are the most important?

What software methodologies and concepts are the most promising?

Interviews with some 20 development managers in different domains gave us a better understanding of
what’s cooking in 2018. Starting with business drivers we found that all companies in one way or another
have the following three challenges on their horizon:

From its humble beginnings, Agile has conquered the world with its promises of flexibility, reduced time to market and customer centric development.

Today there is broad agreement on the benefits of becoming more agile. But off-the-shelf Agile is not the solution for more complex environments. Fortunately, there are means to adapt Agile methods to the specific needs of almost any situation.

Releasing software to users is often a lengthy, painful and risky
process. Paradoxically, the solution to this problem came from
doing more releases – but in smaller chunks.

Continuous Delivery addresses the problem by establishing a
highly automated delivery pipeline from code commits to market
deployment. Small pieces, quick in, quick out or bounce back.

Facing a complex market where systems are no longer built

exclusively internally, the industry has started to mix in-house,

third party and open source software. Why, one might ask?

Open Source is the key to increasing development speed

and lowering cost while boosting innovation. It’s as easy

as that. So, the next obvious question is: how? Well, this

is exactly where Industrial Open Source comes in.

With an increasingly digitalized society, cybersecurity has become extremely important. We must be able to trust that applications we use and data we store are not tampered with.
Secure Development addresses the need to identify and fix vulnerabilities during development, rather than after. It requires implementation of new security practices, but also leads to other benefits like better overall quality.

Numerous companies are currently complementing or even

replacing their products with services. The rewards are many in

terms of better competitiveness and profitability, and an offering

that differentiates companies from their competitors .

In a transformation journey of this magnitude it’s easy to

get lost. Thus, there is a need for a servitization compass to

guide you on the way forward.

New technologies have enabled companies to collect an ever- increasing amount of data. Often in vain. But used correctly, the data can give a bettter understanding of the market and of customers..

Data Driven Development tells you how to unleash the power of data. Instead of (only) relying on experts, product develop-ment is directed by a data feedback loop with the customers.

•	 The competition requires higher productivity and faster innovation. The use of Open Source is is clearly
increasing, as is the focus on services complementing or replacing products (Servitization). Many are also get-
ting better at Data Driven Development by using the vast amount of data that they collect from their systems.

•	 The market is pushing for being adaptable. Agile development and Continuous Delivery are gaining
ground in most domains, even in safety critical systems. Data Driven Development also plays a key role
in adapting to specific markets.The market is also driving companies to provide a modern
development environment to recruit and retain the best developers.

•	 New technologies are often heavily dominated by Open Source because they depend on substantial,
existing infrastructure. As a result, Secure Development is becoming more important,
as previously closed systems are opened up.

Following up on these challanges by also asking our development managers how they choose to tackle them,
we found that it all boiled down to six promising methodologies or concepts.

In this report we go into more detail about the concepts and how our interviewed companies experience
them. The solutions we outline are based on their needs. The bottom line is that we must know the business
challenges to select solutions that best address the needs for change. Therefore, before continuing,
we pose the following questions:

Which are your challanges? How do they impact your ways of working?

“If you do what you’ve always done you’ll get what you’ve always gotten”

-– Jessie Potter

Increased competition New technologiesFast moving markets

are trying Agile
need to adapt Agile
have problems adapting Agile

90 %
70 %
55 %

Adapted Agile
Agile development is used in many different environments,
although the level of implementation differs. Clearly it is here
here to stay, and not without reason:
•	 Time for product definition is limited and it needs

to happen in parallel with development.
•	 Development is becoming more complex and

difficult to drive top down, favoring exploratory
development by “expert teams”.

•	 Software companies must deliver new functionality
fast in order to meet changing market needs.

•	 Customers expect small continuous updates rather
than large chunks that impact operation.

Agile started in small IT settings where it quickly proved its
value, but as with any solution to a complex problem, not
even Agile is a silver bullet. Implementing Agile according
to its original definition in other domains turned out to be
difficult. This is where Adapted Agile comes in. There are
several circumstances in which an organization cannot be
fully agile, but needs to adjust its agile way of working:

•	 Large-scale (complex) development: Going from one
co-located team to multiple teams spread over different
sites will inevitably challenge the Agile concept. There are
several models that address scaling (e.g. SAFe and LeSS),
but generally there is a need to balance team independ-
ence with coordination and overall guidance outside of
the teams as well as more focus on the architecture.

•	 Supplier set-ups: Organizations with several suppliers
working in parallel on a complex system (as in the auto-
motive industry) need more management of requirements,
documentation and top-down decision making. An adap-
tedagile approach in this scenario could for instance be
to agree on working according to an iterative agile pro-
cess with less up-front requirements. The agile way of
working will impact the commercial interface to the sup-
plier and must be understood by all involved parties.

•	 Hardware development: Hardware development gener-
ally follows a waterfall model with long lead-times where
latefound problems lead to increased cost and delays. The
related software development cannot only prioritize agile
concepts like customer value and learning from mistakes,
but must support hardware evaluation and test. Some system

testing also usually depends on the final hardware, which
is not complete until late. Adapting Agile in this case could
be done by decoupling hardware independent components
of the software and working with simulated or replacement
environments, so at least parts of the system can move to-
wards Agile. This will require additional hardware and soft-
ware planning and coordination, which is not bad in itself.

•	 Regulated products: Organizations working with safety
critical products must adhere to the ISO safety standards
such as 26262 for automotive and 62304 for medical equip-
ment. There are also coming similar standards for security.
These standards enforce documentation, traceability and
specific activities such as hazard analysis. However, all these
standards are written from a waterfall perspective. There are
ongoing efforts in the community to adapt these standards
to agile development. These adaptations divide the required
activities into three phases: What needs to be done initially,
such as hazard analysis? What can be done as part of each
iteration? And what must be done after the last iteration? An
example of a divided activity is security penetration testing
that could be set up automatically during iteration, whereas
more extensive penetration testing is done towards the end.

The key take-away is that in all these cases you can still aspire to
be more agile. The fact that you cannot go fully Agile doesn’t
mean that you have to throw in the towel. It is important to un-
derstand the conditions in your specific environment and given
this, define the best possible agile way of working. It is all about
going back to the agile principles and finding a balance. What is
most important to your organization, working software or com-
prehensive documentation? As indicated above there are some
approaches available, but don’t forget that apart from the meth-
odology there is also the challenge of adapting the organization
and its roles for an agile environment. In particular, organiza-
tions that have strong specialized roles can face a challenge.

Judging from the answers to the survey, agile methods
have been tried by a vast majority. In addition, 70 % of
the interviewed managers say that they need to adapt
agile to their specific domain requirements, and 55 %
have problems doing so.

use Open Source
have controlled intake
contribute strategically

85 %
35 %
15 %
5 % use OS as a business opportunity

in
ho

us
e

3r
d

pa
rt

y

Open SourceIndustrial Open Source
1 Intake, which governs how to use Open Source	in a repeatable manner:

•	 Policies and procedures. To ensure a common direction with-
in your organization, policies and detailed procedures for Open
Source intake, compliance and contribution are essential.

•	 Organization and Roles. Responsibilities related to Open Source
need to be assigned. This can be done by e.g. appointing an
 Open Source Officer and establishing an Open Source
Board. In addition, ensure sufficient legal involvement.

2 Contribution, creating an environment and a strategy	for active participation:

•	 Culture and competence. To impact communities, an organization
needs to create an Open Source culture and foster industry experts
with leading roles in the communities.

•	 Product strategies need to include strategies for what you develop
yourself (differentiators), what you buy and what you share through
Open Source, i.e. Make – Buy - Share.

•	 Decentralized strategy. A community cannot be controlled from the
outside. The developers involved in the community need to active-
ly engage and contribute to drive the direction of the community.

3 Business context, to understand opportunities in the transformation from product value to business value:

•	 Business involvement. Open Source can be a game changer for
the business to enable accelerated growth, disrupt market entry
barriers and open up for alternative business opportunities to
benefit from new revenue streams.

•	 Ecosystems. An offering that is part of an ecosystem can become
“the business” and not just something that supports the business.

•	 Servitization. This transition happens when the core product becomes
a vital service infrastructure, and thus climbs the value chain.

Status in the interviewed software organization shows that most companies are using Open Source. About a third of them have
 intake under control (or are on their way), but only a few have reached the second stage where the product offering is made
 in the context of an Open Source contribution plan. Open source is here to stay, and it is up the companies to decide if
 they will be a passive bystander or an active driver.

The Open Source movement is several decades old, but it
wasn’t until the turn of the millennium that major companies
entered the game and increased the concept’s momentum. Since
then, Open Source has transformed the industry through Open
Source based development. Some of the reasons for why the
movement is rapidly growing include:
•	 Global development awareness and access.
•	 Maturing industries, standards and practices.
•	 Increased demand for reduced lead-times and

development cost.
•	 Merge of domains, for example connectivity

technology with previously closed applications.
•	 The snowball effect. The big players are doing it,

so now everyone else wants to get involved.

There are many benefits from turning to Open Source:
•	 Innovation – Overall community capacity and

diversity imply increased innovation.
•	 Speed – The fact that Open Source software offers

de facto standard solutions to many problems reduces
the time-to-market for product offerings.

•	 Cost – Open Source is free to use but comes with a
governance of license compliance cost. Development
and maintenance costs are shared by the community.

Consequently, today’s industry faces a complex environment
where systems are no longer primarily built on in-house devel-
opment, but on a mix of in-house, third party and open source.
SW companies are moving from development to integration.

Managing this complexity requires practices to tackle legal
and security challenges. The open source licenses include obli-
gations, which if ignored can result in copyright infringement,
extensive rework and delays. The open source code is also
open to all, leading to increased security vulnerabilities.

There are three maturity levels of Industrial Open
Source management to consider when the decision to
engage has been taken:

 V
ers

ion control Develop Measure Operate

 Build Unit test Integration test

Syst
em

 tes
t

Deliver Deploy Release

develop in small steps75 %

integrate continuously55 %

deliver continuously20 %

5 % deploy continuously

Continuous Delivery
Traditionally new software versions have been released infre-
quently to customers. The release and deployment process has
been painful, risky and time-consuming. Now, more and more
companies are turning up the release pace; just consider your
smartphone or laptop, not to mention web applications. Work-
ing with frequent releases is called Continuous Delivery (CD).

Although CD was initially established to reduce the problems
of large and infrequent integrations, companies are now driving
the market by deploying new functionality faster. The use of
CD has also given other positive side effects, e.g.:

•	 Increased test automation, leading to better quality
•	 Drastically reduced cost of each release and deployment
•	 Faster feedback from the market
•	 Special patch releases for e.g. security are often not needed
•	 The whole organization becomes more agile and

customer focused

When talking about Continuous Delivery, we are referring to
a whole sequence of continuous processes that build on each
other and together constitute the complete delivery pipeline:

Continuous Development

The code is developed in small chunks that are frequently
committed. Committed code has to pass a “definition of
done” involving a set of tests, mainly automated. The tests
typically comprise unit tests, static tests, implementation
tests and code reviews.

Continuous Integration

All code that developers commit is automatically integrated
with all the sources in a common configuration branch and
then automatically built and tested. Any integration problems
are reported back to the developers who committed the code.

Continuous Delivery

The resulting build from the integration is put as a delivery
candidate in a staging environment, where it is automatically
system tested. If it passes the tests, the release candidate can
be deployed into production. The actual deployment
is a business decision.

Continuous Deployment

The deployment is automatic, there’s no human intervention
through the pipeline. Every change that makes it through is
put in production automatically. There can be several
production deployments a day.

Key properties and enablers:

Short development cycles – By working in small in-
crements,a low-risk delivery flow with a fast feedback loop
can be ensured. The goal is that all developers commit at
least daily to the mainline, which pushes developers to
break down work into manageable pieces.

Build Quality in – By controlling how code is written,
reviewed, verified and configuration managed we get con-
trol over the flow. Strict definition of done is a key enabler.
These practices become the steps in the Delivery Pipeline.

Automation – With automated builds, tests, deployment
and documentation, developers get quick feedback on code
they have committed. The order of the different automated
tests should be organized so that bugs are found as quickly
as possible. By automating the delivery pipeline,
the flow is enforced - no more shortcuts.

Collaboration – With cross-organizational cooperation
and common goals, conflicts about delivery and quality are
avoided. Everyone is responsible for the delivery flow and
quality. With job rotation and data visibility, collaboration
can be strengthened.

CD is in line with the lean software development movement
emphasizing optimization of the whole, tying together every
part of the delivery process and getting everybody involved in
it. Only when you have control over the whole flow can you
begin to optimize the quality and speed of software delivery.

Almost all the interviewees consider continuous
integration as the most realistic choice for their
business. Continuous delivery or deployment
would be a realistic option in the case of fully
cloud based business lines.

w h i l e ((m s g = c u r l _ m u l t i _ i n f o _ r e a d (c m , & Q))) {
 i f (m s g - > m s g = = C U R L M S G _ D O N E) {
 c h a r * u r l ;
 C U R L * e = m s g - > e a s y _ h a n d l e ;
 c u r l _ e a s y _ g e t i n f o (m s g - > e a s y _ h a n d l e , C U R L I N F O _ P R I VAT E , & u r l) ;
 f p r i n t f (s t d e r r, " R : % d - % s < % s > \ n " ,
 m s g - > d a t a . r e s u l t , c u r l _ e a s y _ s t r e r r o r (m s g - > d a t a . r e s u l t) , u r l) ;
 c u r l _ m u l t i _ r e m o v e _ h a n d l e (c m , e) ;
 c u r l _ e a s y _ c l e a n u p (e) ;
 }
 e l s e {
 f p r i n t f (s t d e r r, " E : C U R L M s g (% d) \ n " , m s g - > m s g) ;
 }
 i f (C < C N T) {
 i n i t (c m , C + +) ;
 U + + ; / * j u s t t o p r e v e n t i t f r o m r e m a i n i n g a t 0 i f t h e r e a r e m o r e
 U R L s t o g e t * /
 }
 }

DES
IG

N
 &

IM
PLEM

EN
TA

TI
O

N

VERIFICATION

RE
LE

AS
E

REQUIREMENT

70% lack security competence
40% lack awareness of security risks

70% lack security activities in development
75% lack coordination of security activities

Secure Development
Security has always been important in systems that can be
accessed from outside a physically controlled environment.
What we now see is that security -- driven by technologies
like IoT, Cloud, Open APIs and Big Data -- is moving out-
side the traditional IT environment into most technical sys-
tems, as these become more exposed and integrated. Security
is becoming an issue for most development organizations.
•	 There are at least three essential aspects of security:
•	 Information Security Management System (ISMS),

through e.g. ISO 27001.
•	 Infrastructure, e.g. firewalls, crypto and APIs.
•	 Secure Software Development Life Cycles.

Security from an organization (ISMS) and infrastructure
perspective has been on the agenda for a long time, although
maybe not for technical systems. In this report we have chosen
to focus on the third item, Secure Software Development Life
Cycles (Secure SDLC in short). Note that there is interaction
among the three items, as assumptions about the first two
items are used during development.

The advantages of a well-defined Secure SDLC are obvious:
•	 Security is systematically treated throughout development,

leading to better quality and greater security.
•	 Customers can confirm that security is being taken seriously.
•	 Cost reduction is achieved through early detection and

resolution of issues.
•	 Business risks are reduced for the organization.

Development of Secure SDLC models is ongoing and
there are several good examples: Microsoft’s Security De-
velopment Lifecycle (MS SDL), NIST 800-64 developed
by the National Institute of Standards and Technolo-
gy, and OWASP CLASP (Comprehensive, Lightweight
Application Security Process). OWASP has also devel-
oped a Software Assurance Maturity Model, SAMM.

A Secure SDLC adds security-related activities to an
existing development phases; some examples are:

Requirements: Threat modeling and security require-
ments. Security requirements must cover aspects such as
how to avoid penetration, detect penetration, isolate and
limit impact as well as how to recover from breach.

Design and implementation: Attack surface and vulnerability
analysis, security architecture, secure design patterns and coding.
A security architecture review using a checklist like OWASP Ap-
plication Security Architecture Cheat Sheet is recommended.

Verification: Penetration and fuzz testing. Many organ-
izations use external penetration testing services to en-
sure that they get independent qualified verification.

Release: Secure configuration and environment validation.
Ideally the system should automatically validate and monitor the
environment to ensure that it provides the required security.

The largest challenge in establishing a successful Security SDLC
is integrating security activities in the existing software devel-
opment process and organization. The complexity can appear
overwhelming and give the impression that productivity and
flexibility will be reduced. Yet, done correctly, they can improve
the system through better general quality at a moderate cost.

Some key success factors to work efficiently with security
during development:
•	 Use the public Secure SDLC’s as inspiration. Integrate security

activities in the organization’s existing development process, as
the existing process suits the needs but is weak in security.

•	 Let development teams and not security experts manage
all security related activities. There is still a need for security
experts but they should provide support instead of driving
their own activities. OWSP provides practical checklists.

•	 Perform security activities at the right time. This is increasingly
important and challenging as we move from traditional waterfall
development to agile development. The Microsoft guidelines
provide good examples of what activities to do and when.

•	 Security has to be part of development of all features,
not only specific security features. However, since all bugs
potentially have security implications, the positive
outcome is overall increased code quality.

The interviews indicate that the security maturity in the manu-
facturing industry was low, but is rapidly increasing. They have
been accustomed that their systems are in a secure and controlled
environment, but this is not the case anymore. The largest
problems are lack of security competence, security
activities and co-ordination across the lifecycle.

D
ata Collection & Analy

si
s

De
liver & Experiment

validate and analyze data45 %
deliver continuously20 %
experiment actively10 %

With this in place, an organization has the tools to seek an-
swers to more or less any question or validate any assumption
it might have – and to take action accordingly. DDD can be
taken one step further by reshaping the creative process into
an experimental approach. This requires an ability to break
down product ideas into iterations and experiments and
to ask the right questions.

Your experimentation could be about: – New product ideas
and how to hone these into something that fulfills real needs
on the market. – Evolving existing products with new features
by ensuring that each new thing you add makes sense to your
customers and creates real end-user value. – Pruning (or
removing) products by examining the actual use of
the current feature set.

It’s not a coincidence that many of the big players
in the tech industry are using DDD extensively. They
have found that it is a key to ensure user acquisition,
drive increased customer satisfaction, and establish a
market and customer driven innovation system.

DDD will be one of the major changes in the years to come
As with e.g. Agile and Continuous Delivery, it also requires
a transformation of culture. All parts of your organization
need to agree to the methodology and work much closer
together than they are (probably) used to, e.g. the product
planners with the engineer, all having customer data and
experimentation as a main vehicle for innovation.

The status in today’s software organizations is this:

Data Driven Development
In today’s world, companies of all sizes and in all industry
segments are collecting an ever-increasing amount of data.
In the last couple of years there has been a growing interest
in how data can help redefine product development processes
to the level of Data Driven Development (DDD). In short
this means that instead of basing product development on
expert opinions, development is directed by a feedback
loop with the customer.

Thus you need to ensure that data collection and analysis
are part of the process, so that system and user responses
can be measured. The drivers for you are higher customer
satisfaction and better understanding of the market and
the merits of the product.

The main enablers for doing DDD are the following:

•	 Iterative development, to develop and deploy
frequently, so techniques like continuous development
will increase your ability to experiment.

•	 Data collection. The ability to collect relevant
data in many different shapes and fashions:

⋅⋅ Qualitative data can be retrieved from users
expressing their views about a product through
e.g. user surveys, ratings or social media – or even
video recordings of consumers using the product.
Understandably, this type of data requires careful
consideration in the analysis step, but is often vital.

⋅⋅ Quantitative data are often collected through
automated systems, like code probes that track
user actions, system response and diagnostics
or third-party market data.

•	 Data storage and validation. You need somewhere to put
your data, and you want to secure the quality and validity of
them, including proper handling of privacy and security.

•	 Data analysis. Most crucially you want to derive
insights and knowledge from your data. This is not only
about statistical methods, but can also involve understanding
user feedback and psychological and behavioral factors.
Ideally you would like your development team to be able to
do its own analysis, but expert support may be needed
to get started.

They collect (huge amounts of) data – but
do only limited validation and analysis

They make quick updates when needed – but
do not build a continuous, cyclic (innovation)
flow (including Continuous Delivery)

They ask what the consumers think – but
don’t experiment actively

Fully servitized0 %
Advanced5 %

Intermediate25 %
70 % Base

Servitization
Advanced Services (pay per use)

•	 The tangible product is owned by the service provider or
financial partner.

•	 Examples of services offered: customer support and rental agreements,
risk and reward sharing contract, revenue-through-use contract.

Fully servitized (independent of product supplier)

•	 The service is the main offering, and can be connected to products
from any manufacturer, owner or operator.

•	 Examples of services offered: Typical examples of fully servitized
companies are Airbnb and Uber. Even streaming services like Spoti-
fy, Netflix and YouTube can be considered part of this category. We
now see Netflix is starting to produce its own content and Uber is de-
veloping self-driving cars: as the pure service providers become more
powerful they start tapping into the other parts of the ecosystem.

There are many challenges to servitization for a product company,
both internal and external:
•	 The organization was set up to produce physical products

and does not have much competence in providing services.
Most managers have hardware and production focus.

•	 Servitization requires new competences, especially
software resources, which may be scarce.

•	 Moving to servitization requires a holistic view on the entire value
chain and has to consider organization, culture, budget and KPI’s.

•	 The existing ecosystem of partners is threatened by the
product company taking over some part of their job.

•	 Customers are reluctant to be tied too closely to one supplier.
•	 Technical challenges related to servitization, such as privacy,

security, usability, big data, availability and performance.

All of the other software methodologies presented in this report
are useful or required to support servitization:
•	 Secure development will ensure that the services are not

hacked and valuable customer data is not stolen.
•	 Data driven development reveals how services and products are

used and facilitate meeting market needs faster and better.
•	 Open source frameworks are dominant in the web domain.
•	 Adapted agile and continuous delivery are almost

a must when moving into services.

From the interviews, we can see that servitization is coming,
the question is just who will get there first.

In essence Servitization is a transformation journey – it involves
companies developing the capabilities to provide services and
solutions that either supplement or replace their traditional
product offerings. Recent technological advances such as cloud
computing, big data, mobility and social media have enabled this.
Strictly speaking, Servitization is not a software methodology,
but it is fundamental in the current transformation of the
industry, and heavily dependent on software.

Business drivers for services:
•	 Customer expectations. Customers become increasingly

demanding and organizations are pressed to adjust to those
high standards, and thus implement customer centricity.

•	 Financial incentives. Shrinking product-based profit
margins are spurring the need for service-based revenue
growth. Revenues from services are greater than new
product sales, especially in times of economic crisis.

•	 Gaining competitive advantage. Customer service has
become a competitive trump card, making services are
difficult to imitate and locking out competitors.

•	 Marketing opportunities. Use services for selling more
products. By offering services, companies gain insight into
their customer’s needs. This insight can be used in data driven
development but is not used extensively except in a few
internet companies.

A key to successful servitization is to create a “win win win” situation
for producers, suppliers and customers. The customer can see advan-
tages in a better cost structure, reduced financial risk and operative
cost, and ideally can see a common goal with the service supplier.

There are several levels of servitization:

Base Services (products and spare parts)

•	 	The customer owns the tangible product.
•	 Examples of services offered: product and equip-

ment provision, spare parts provision and warranty.

Intermediate Services (maintenance, monitoring, field support)

•	 	The customer owns the tangible product.
•	 Examples of services offered: scheduled maintenance, tech-

nical helpdesk, repair, overhaul, installation, operator training
and certification, condition monitoring and in-field service.

Cost

TTM
Innovation

Productivity

Flexibility

Quality

Capacity

Delivery
precision

? ? ? ? ? ?

Conclusion
Even though the companies interviewed vary in size and oper-
ate in different domains, there are some very interesting trends:
•	 Increased connectivity and IoT are making domains

more similar, i.e. in theory, all companies can now be in
direct contact with their products, collect data and deploy
changes continuously. Previously this was mainly
restricted to pure Internet companies.

•	 Large-scale development is spreading. It started over
forty years ago in domains such as defense and telecom.
Now more and more areas are facing these challenges;
for example, the automotive industry has faced ex-
ponential growth in areas like infotainment and
active safety and now in autonomous driving.

•	 Many of the established, large development teams have
in turn started to learn from the fast-moving development
teams in Internet and start-up companies.

•	 Mandatory process standards, e.g. for safety, security and
maturity, are emerging in more and more domains.

The trending solutions are supporting these changes, and we
see streams of knowledge in transfer between domains.

Several of the trending solutions are also tightly connected.
This concerns in particular Adapted Agile, Continuous
Delivery, Data Driven Development and Servitization.
Solutions can be selected based on the business drivers and
implementation adapted to the needs of the company.

So how are our companies doing then?

 Judging from the responses, there is room for improvement.

Challenges experienced included:
•	 Chosen solutions are often not driven by business goals.
•	 Existing good practices are sometimes missed, as

software process improvements often are led by
a process group separate from the projects.

•	 Taking on too many improvements at once;
better to focus on a few.

•	 Many organizations aim high, but still struggle with
basic software engineering practices like requirements
and planning – you must walk before you can run.

•	 The human side of change is neglected. Change starts
with people and then continues in organizations.

These challenges often lead to the fact that many solutions
only get partly implemented, if at all.

Inevitably we have not seen the last changes in software
development, far from it. Organizations must get used to
the continuous change and learn to adapt faster and faster.

In other words
As market expectations continue to grow, organizations must:

Do the right thing – and it’s not just about being
effective. They must be aware of coming development
trends and anticipate them in time. How, for instance, will
AI and machine learning affect software development
and verification? A game changer, most certainly.

Do it right – even when doing the right thing, being utterly
efficient has never been wrong. This report asks what’s cooking
in the industry. As in cooking – apart from having the right in-
gredients and an aim to make a good dish – you also need
the right tools, processes and competence to succeed.

To wrap it up

We asked: what are your business drivers?

There are so many solutions that it’s easy to get confused.
This is in fact the key lesson: to stay aware of your business
drivers, determine what is needed to succeed and consistently
implement your strategy.

Again, as in cooking – too many cooks who don’t work
together will end up making a dog’s breakfast.

Method
Results of approximately
20 interviews carried out by
Addalot during 2017.

Interviewees included software
development managers and pro-
fessionals in IT organizations at
software product development
companies in the automation,
automotive, IT, med tech
and telecom industries.

The interviews combined a
quantitative questionnaire with
qualitative open discussion.

Addalot transforms
companies where system,

software and IT are business
critical in order to meet their
objectives.

Our services are based on 25 years
of experience and include assessments,
transformations, interim management,
specialists and training.

 Learn more about us at:

 www.addalot.se

This report is licensed under Creative Commons 4.0

https://creativecommons.org/licenses/by/4.0/

