
ADDALOT WHITE PAPER

1

Adapted Agile:

How to setup your agile development model

Summary

Agile development is used in many different environments,

although the level of implementation differs. Clearly it is here to

stay, with its promises of flexibility, reduced time to market and

customer centric development. Implementing agile according to its

original definition with context requirements like large scale

development or functional safety is not straightforward. This is

where Adapted Agile comes in. This whitepaper outlines how to

establish an adapted agile development model in challenging

contexts.

ADDALOT WHITE PAPER

2

Adapted Agile

1. Introduction

Agile development methods have reduced delivery times, improved

productivity, increased quality, and made customers more satisfied

within software development.

Several companies have though realized that their particular context

make agile implementation more difficult. It can be e.g. large scale,

hardware, security, or open-source usage that makes it difficult to fully

apply the agile methods. Several of the contexts e.g. expecting

documentation and detailed planning are less valued by Agile.

Embracing Agile development is not a

binary decision where you either need to

do it by the book or not at all. To meet

the expectation of the different

applicable contexts you need to adapt

your agile implementation.

Our experience (*) is that many companies have difficulties with these

adaptations. So how can you succeed with establishing an agile

development model adapted to your context?

One important challenge is to have enough understanding of agile

principles and methods and what the requirements of the contexts

mean to be able to perform the adaptation. This knowledge is a

starting point. Then you need to understand your own context to be

able to understand the fit.

It is like selecting shoes that match your

feet and context. First you must find a

pair with the right size. But fit is just the

first step, some shoes are light and fast,

perfect for track and fields but might not

be what you need for a mountain hike.

The white paper brings ideas on how to succeed with Adapted Agile so

you can become more agile and more efficient than you are today!

Succeeding with agile describes

how agile increases

productivity, quality, and

employee satisfaction

(*) From Addalot survey :

90% are trying Agile

70% need to adapt Agile

55% struggle adapting Agile

https://www.mountaingoatsoftware.com/presentations/succeeding-with-agile
https://www.mountaingoatsoftware.com/presentations/succeeding-with-agile
https://addalot.se/downloads/

ADDALOT WHITE PAPER

3

2. Agile development

Agile development is used in many different environments, although

the level of implementation differs. Clearly it is here to stay, and not

without reason:

• Time for product definition is limited and it needs to happen in

parallel with development.

• Development is becoming more complex and difficult to drive

top down, favoring exploratory development over “expert

teams”.

• Software companies must deliver new functionality fast to meet

changing market needs.

• Many customers expect small continuous updates rather than

large chunks of functionality.

• There is a need to be able to quickly react on changes.

Agile started in small IT settings where it quickly proved its value, but

as with any solution to a complex problem, not even Agile is a silver

bullet. Implementing Agile according to its original definition in other

domains turned out to be difficult.

Instead of throwing the agile baby out with the bathwater when faced

with a complex context, you should make your development as agile

as possible but not more agile than that.

Adapted agile guides you to find this sweet spot, between the

extremes in the agile manifesto, see picture below. It introduces the

required minimum of planning, documentation, etc. to manage the

context requirements while enjoying the agile benefits.

Figure 1: Agile Manifesto, favoring left side over right side.

GOAL:

You should make

your development

as agile as possible

but not more agile

than that.

ASSUMPTION:

The Manifesto can be seen

as a sliding scale where

the left side is “more agile”

than the right side.

ADDALOT WHITE PAPER

4

3. Challenging contexts

Many companies do not have a set up

where agile can be applied by the book.

Depending on requirements of their

context, several adaptations to agile

values and principles are needed in order

to establish an effective way of working.

This chapter presents some contexts and describe their characterizing

requirements/challenges for agile development. Typically, several of

these contexts come to play – and partly overlap.

Large scale

Large scale development is characterized by that the number of teams

or sites grow. The challenges start already with two teams and get

more serious at 9-10 teams. This corresponds to the number of

interaction points that we as individuals can manage. Regarding the

number of sites, already when you move from colocation to two sites

significant challenges start to occur. In addition, there are also large

scale aspects when you have multiple product lines.

Challenges:

• With more people or additional sites communication needs to

be strengthened. This involves more meetings and more

documented (physical/electronic) information.

• When size grows it often results in that the number of

dependencies grow. With more dependencies, the need grows

for more synchronization and fixed planning which may reduce

flexibility.

• When the number of people and teams grows, it is not

uncommon that specialization increases, e.g. a separate team

for GUI or architecture. This leads to more handovers that

needs to be documented.

• Large scale can result in a distancing to customer, as it is easy

to focus on internal contribution and not on customer benefit.

• With multi-site development, cultural as well as time differences

require more documentation.

Long life

Products (generally large) with long life impact the need for structured

maintenance. There is a high likelihood that feature update and bug

fixing will be done by someone else than the original developer.

Architectural decisions for product with long life are extra critical

which require structured decisions and that the rational for the

Adaptations will require you to

move towards the right side in

the Manifesto sliding scale

The ideal set up

for agile development

is one collocated team…

Products with long life

require investment in

maintenance!

ADDALOT WHITE PAPER

5

decisions are recorded. And is not always something than can be

developed bottom up by dev teams. However, independently of how

the architecture decisions are handled and by whom, it is particularly

important that the rational for the decisions are documented when a

product has a long lifetime (and the lifetime of software is often longer

than expected).

When long life starts to make an effect is somewhat impacted by the

turnover of personnel. If you experience a high turn over the effect will

occur more promptly.

Challenges:

• With long lived products it will be high likelihood that feature

update and bug fixing will be done by someone else than

developed in the first place. When future development and

maintenance will be performed by other people than the

original developers, the requirements on the documentation

increases. Aspects that can be difficult to understand by just

reading the code need to be explained, e.g., requirements,

high-level design, and design rationale.

• The expected lifetime of a product may influence the require-

ments on the architecture and the consequences of the design

decisions. For example, decisions that have an impact on

maintainability, changeability, and portability may be more

important when the lifetime of the product is expected to be

long.

• Like architecture decisions, decisions related to development

and test tools can be extra critical when the product has a long

lifetime. Changing or adding development and test tools may

have a significant impact on the future development and test

activities and may also involve costs to acquire the tools and to

provide training.

Subcontracting

Subcontracting involves that a part of the development is made by one

or several suppliers. In automotive development, you often see an OEM

(Original Equipment Manufacturer) with long chains of suppliers

(OEM➔Tier1 ➔ TierX)

Challenges:

• Multiple suppliers imply parallel development, which requires

clear interfaces and more synchronisation and documentation.

• Order mechanisms are by nature not agile. Contracts can

stipulate fixed scope, fixed price, fixed schedules, competitive

bidding, and tough penalties for underperformance. This

Subcontracting includes

soft context requirements

related to culture

ADDALOT WHITE PAPER

6

results in a need to know exactly what to produce which

requires massive pre-planning. Delivery to some governments,

especially in the defence industry share the same difficulties.

• If the subcontracting involves hardware, the payment terms will

likely be related to the number of items and not to the

development, which will make change handling more difficult.

• Sourcing departments that perform evaluation of suppliers do

not always have enough technical competence resulting in that

price supersedes competence and experience in most cases.

• The culture in supplier development is often less cooperative;

the fundamental approach is that the suppliers shall be

exchanged continuously to limit business dependencies. This

leads to more formal interfaces and management.

Hardware

System development that includes both HW and SW is common for

most embedded products. The presence of HW forces SW development

to adjust and reduce the degree of agility in the SW development.

Challenges:

• Long lead times with key decision points related to HW is often

applied on SW (even if it does not make sense…). E.g. project

gate/milestone checkpoints can include aspects like “all

requirements defined” or “design ready”.

• Since HW is often on the critical path, SW development often

must prioritize HW needs, like HW test code (that later must be

thrown away)

• The increased complexity increases the need of dialogue,

interfaces, and documentation

• Automation of testing is more difficult since CI/CD/DevOps

with hardware is possible but more challenging.

• In many projects including SW/HW is the HW part is not decided

and need a research part (i.e. solution not fully decided). This

keeps SW hostage and need to keep alternatives open.

• Late problems related to HW is often transferred to SW – hard

to close features and increase the amount of CR.

Process Capability Models (ISO/CMMI/ASPICE)

Some development organizations have decided to comply with a

process capability model (PCM) like ISO, ITIL, CMMI or Automotive

SPICE. This can often be driven by customer requirements, particularly

in the defence domain (CMMI) and the automotive domain (A-SPICE).

Challenges for applying Agile in

HW development is not

considered in this paper.

Hardware represents both

electronic and mechanical

development

This white paper is not

evaluating the importance or

necessity of the requirements

from the process capability

model but merely stating that

if you want to meet them you

need to be less agile

ADDALOT WHITE PAPER

7

The process capability models claim to be consistent with agile, but

the reality is rather that they can co-exist, and an agile development

organization needs to add many practices and documentation in order

to live up to the different models.

Challenges:

• The process models require a lot of documentation (strategies,

plans, decisions, status, records). Including:

o that key decisions in architecture and detailed design

are evaluated and formally documented.

o documented procedures for how to perform many

activities like how to write test cases, handle defects

and establish baselines.

• Another key area for process models is ensuring consistency

and correctness by expecting traceability, reviews, and quality

assurance assessments. These areas cost both time and render

in administration and documentation which are not highly

valued in agile.

• Essential in process models is process management, i.e. the

focus to document the way of working.

Safety

Organizations producing safety related products need to comply with

different functional safety standards. There are many standards like

IEC 61508 (generic), IEC 62304 (medical device), ISO 26262

(automotive) EN5012x (railway), DO-178B (aviation), and IEC 60880

(nuclear). These standards become a ticket to trade for the involved

producers, without compliance products cannot be released.

Challenges:

The content of the safety standards overlap with the process capability

models; thus, the challenges are very similar. In addition there are

some unique challenges:

• More strict order of development, including that previous

development steps are approved before work proceeds.

• Safety concept work including safety goals, safety analysis,

hazard analysis and safety case. Which all result in

documentation.

• Safety standards expect an established and maintained

development lifecycle.

• More prescriptive development and verification methods. This

includes e.g., inspections, static code analysis, test case design

using equivalence classes and boundary values, and structural

test coverage of requirements (statement coverage, branch

ADDALOT WHITE PAPER

8

coverage, etc.). Normally, most of these methods can be used

also in agile development.

Cyber Security

Largely characterized by that the development organization has

decided to comply with a Cyber Security Standard (e.g. NIST

Cybersecurity Framework for Manufacturing, ISO 21434, IEC 62443

and ISO 27000). Security standards have similar challenges as safety

standards.

Challenges:

• Security related activities like Threat model, Attach surface

analysis and criticality analysis. Some of these activities need to

be performed early and in a certain sequence. They may also

require external participants with special competence. When

adapting an agile way of working for security related

development, it needs to be clarified how these activities will be

handled.

• Secure product development lifecycle, including security

requirements, coding, and test.

• Deliver frequently can be challenging:

o it is not clear when some of the security development

practices should be applied, like when to update/review

threat model.

o some of the security development practices are manual

and expensive to repeat, like penetration testing.

• In agile you often do not design for needs that could or will

come up in the future while security advocate for that full

solution is designed from the beginning.

Open-Source development

Large organizations that are actively using and contributing Open-

Source (OS) components need to adhere to the OS development

guidelines. Several OS aspects support agile (e.g. deliver often, focus

on working software, focus on technical excellence), but there are also

some points were agile and OS development are not aligned.

Challenges:

• OS is often more technology driven than customer value driven

with little focus on business participation.

• Some OS licenses require documentation.

• OS does not prioritize face to face interaction, cooperation is

secured more through documentation (e.g. read me files) and

through electronic interaction like web pages and mailing lists.

ADDALOT WHITE PAPER

9

• OS has a strict view on community roles with respect to usage

and ownership, Agile is less focused on the topic except

eXtreme Programming that has the principle around “collective

code ownership”.

• OS is not always resource effective rather driven by survival of

the fittest. While agile focus on simplicity and lean approaches.

• OS excludes continuous improvement of way of working.

Summary of contexts

The different contexts and their impact on the Agile manifest are

summarized in the table below (XX: high impact and X: some impact):

 Individuals &

interactions

over processes

and tools

Working

software over

comprehensive

documentation

Customer

collaboration

over contract

negotiation

Responding to

change over

following a

plan

Large scale X XX XX

Long life X XX

Subcontracting XX XX XX

HW X X XX

PCM XX XX XX XX

Safety XX XX X

Security XX XX X

Open Source XX X

Other

Agile is applied in several other settings that require adaptations, but

not covered in this white paper:

• Regulatory requirements (FDA regulations, PCI SSF, SOC2, etc).

• In organizations with elaborated budget process that require

extensive pre-planning including pre-studies to develop

business cases (cost/benefit analysis), etc.

• Management teams, going from more separated, document

driven work to smaller assignments with higher degree of

cooperation.

• Business strategies, going from long term planning to

continuous evaluation with more experimentation.

• Hardware and mechanical development going from traditional

plan driven to include simulations, experimentation with 3D

printing.

Finally, there are also contexts with no contradiction and rather

strengthens/complements agile like “Lean development” and “Data

driven development”.

ADDALOT WHITE PAPER

10

4. How to derive your adapted agile model

To establish an adapted agile

development model, there are two

input sources to investigate. The first

input source is related to the context

requirements while the second deals

with independent agile principles.

1) Fulfill context requirements. The specific context requirements

that need to be met, can be implemented in solutions more or less

agile. To succeed you need to understand what the context

requirement really demands and implement new way of working that

satisfy the context and still be remain agile as possible.

2) Apply agile principles. Many agile principles can be implemented

without impacting the context requirements.

The two input sources are outlined in the following two subchapters:

4.1. Fulfil context requirements

With the first input source the

requirements from the different

contexts need to be analyzed and

understood to be able to implement

them in an as agile as possible way.

The key is to understand that the

expectations from the different

contexts CAN be implemented in different ways. Just as putting out the

light can be done in various ways. Some more agile than others.

First comes three general remedies to consider, then follows some

context specific advice.

Isolation

One way to limit the implication of the context is to analyze which

parts of the product and organization are impacted by the relevant

context requirements? Is it the whole system or can we define the

architecture in such a way that we can isolate the need to specific

parts? Both safety and large process model requirements can be

reduced in this way. Understanding the use of the product and how the

system interacts with its environment is central to establishing an

effective system architecture. For the part of the system where the

context requirements are relevant there will of course be a need for

meeting them.

For example, in a system used to supervise and control some critical

Remember:

 as agile as possible

 but not more agile than that

A thought through architecture

is needed to successfully isolate

the more context demanding

parts of your system.

ADDALOT WHITE PAPER

11

physical process, the parts of the system that controls the process can

be safety critical and needs to be developed according to applicable

parts of a safety standard, while the parts of the system that interacts

with the users may be less critical and can be handled as normal

development work.

Scheduling of practices

For the context requirements that must be considered, (additions of

needed activities and documents) the level of agility should be

investigated by answering the following questions:

• What must be done initially? (e.g. role description, initial

requirements, and architecture).

• What can be done continuously in the iterative flow (e.g.

requirement refinement, implementation, and plans).

• What can be done informally in the running sprint and formally

after the final sprint (e.g. formal reviews of requirements,

architecture, design, and test report).

• What can be done in specialized iterations (e.g. specific tests).

• Can new meetings/documents be avoided and instead use

existing activities/documents (e.g. can parts of QA be done in

the retrospective? Can risks be follow up in project meetings

instead of own risk meetings?).

The goal of going through the questions is to find the balance between

the amount of investigation, specification and planning that needs to

be done before development starts, what can be done continuously,

and how much documentation can be done afterwards. It saves time

and increases the quality not to complete the whole puzzle upfront but

to finish it over time. In the early stages focus should be on

consistency, that the appropriate objects exist and their interfaces,

rather than their completeness. However, starting too early without

enough understanding can be very costly as it may lead to a lot of

reworks later in the project.

Documentation

One of the largest challenges is to find

effective ways to manage the amount of

documentation expected from the context

requirements. Documentation can be

related to strategies, plans, estimates,

product documentation, review records,

traceability matrices, root cause analysis,

technical evaluations, read me files, test reports, release notes, etc.

Many are mandatory from the different process models and standards.

While some are more optional, like expectations from OS communities

Not all activities

are effective to iterate.

Compare going shopping

groceries one item at the time….

REMEMBER:

Context requirement will lead to

additional activities and in

particular documents….

You can only make them more

or less costly to manage-

They can meaningful --- but you

will become less agile…

ADDALOT WHITE PAPER

12

or integration plans to manage multiple suppliers.

A starting point is to clarify that Information ≠ Documentation and that

the context requirement is most often requiring the presence of some

information. It can be in form of a document, or it can be embedded in

a tool. For example, you do not need to create a “traceability matrix

document” if you can do a query in your tool to show dependencies.

Another example is that some information can be generated, like a test

report that can be exported from your test tool.

What documentation shall be avoided? Documentation that is needed

because of handovers (Product managers sending requirements to

development teams, Architect sending architectural models to

development teams or development teams sending design and code to

testers) shall be avoided – consider more agile approaches:

• Common start up meeting with all relevant roles (Product

managers, Product owners, Architects, Development teams,

Test) to ensure everyone have a common understanding from

the start

• Limit handovers by using T-Shaped teams, where team

members have a deep expertise in one functional area but also

ability to work outside their core area, that can take

responsibility from requirements to test.

Documentation that is outlining decisions is more important, level of

detail can though be different depending on complexity and time

validity.

Handling product documentation with reviews and approval is

cumbersome. One solution is to handle the documentation as

code. This is solved by using a markup language (e.g.

Markdown or AsciiDoc) and applying pull requests also for

document updates.

Many benefits:

• Documentation is easy to find.

• Product documentation can be updated together with the code

(always in synch).

• Perform continuous reviews on relevant parts and not

everything all the time.

Specific solutions/adaptations:

Here follows some guidelines for the specific contexts:

Information ≠ Documentation

Handle documentation as code!

ADDALOT WHITE PAPER

13

Large scale:

For large scale and distributed development several risks lurk around

the corner.

• Documentation will increase and needs to be managed as

described in documentation chapter above.

• The agile solution to coordination is meetings instead of

documentation. But many large organizations fall into “meeting

paralysis”, where too much time is spent in unproductive

meetings. Studies show that developers in large organizations

spend 2.5 more hours a week/10 more hours a month in

meetings than developers in smaller orgs. It's called the

"coordination tax”.

o Avoid all-hand meeting

o Consider team of team approach so secure information

is tailored per level in an effective way

o Only the needed people shall be called for a meeting

(avoid good to include …)

o To secure enough “focus time”, introduce meeting free

days/morning/afternoons

• Keeping track of dependencies

o Architecture should drive the organization set-up, and

not the other way around, this helps to limit

coordination. (Value stream mapping can help to

identify recommendable organizational boundaries.)

o Cross functional teams that take responsibility over the

full feature implementation reduce the coordination

need.

• To stay away from establishing handover and bottle necks in

the development flow a solution is to make the development

team responsible for the whole vertical, from system

requirement to system test, but to establish support people for

various areas where resources are scarce (UX, ….)

• Multisite development

o Require continuous communication

o Invest in equipment, e.g. conference equipment

o Physical meetings from time to time helps a lot

o Avoid spread out teams, but rather let the different sites

have functional responsibilities.

Be aware of some process models like Scaled Agile Framework®

(SAFe), include a lot of good practices and information but is very

extensive and often do not start from the need of the organization.

Several SAFe implementations introduce a lot of practices without

understanding the intention. In addition, SAFe proclaim that the

backlog shall be quite defined and locked for three increments ahead,

which is about nine months ---- not so agile…

Other concepts like “LESS” and “Team of teams” is more adding to the

need of a growing organization

For more details on SAFes agility,

 see: SAFe and Agile Values

https://www.getclockwise.com/eng-meeting-benchmarks
https://less.works/
https://www.mcchrystalgroup.com/capabilities/team-of-teams
https://addalot.se/safe-and-agile-values/

ADDALOT WHITE PAPER

14

Long life:

Handling products with long life include aspects to secure efficient

maintenance:

• Ensure that evaluations or at least rationale of decision become

part of the architecture and not residing in a separate

PowerPoint that no-one will find some year later.

• Not all decisions need to be formally evaluated. Ask yourself

how significant the decision is now and some years from now.

• Introduction of new employees can be used to strengthen

documentation. When new people read up, they can have the

task to add information where they fall short of understanding.

• Maintain test coverage on all levels and prioritize automation.

• Keep track of technical debt, most statical analysis (e.g.

SonarQube and klocwork) tools have checks for maintainability.

Keeping the code clean is essential, apply the scout rule:

“Always leave the code cleaner than you found it”

• To ensure the integrity of the system, proper version control is

needed. This includes tracking, recording, storing, and

retrieving the different versions, revisions, and modifications of

software and documentation, as well as providing mechanisms

for merging, branching, and comparing them.

Subcontracting:

When systems are developed by multiple parties, mechanisms to

secure synchronization and coordination must be put in place. To

some extent like large scale but with added challenges around setting

a cooperative culture.

• Clear interfaces/responsibilities both with respect to

architecture and way of working help to minimize coordination

and synchronization.

• It is essential to not lean back and rely on contractual

agreements. Follow up must be continuous and include both

technical aspects and on progress. The scope/frequency shall

be stipulated in the contract, often defined “Scope of Work” so

that it do not cause any debate and delay the follow up.

• Establish common goals. Do not only have delivery goals from

supplier to OEM but have goals on working functionality that

require all stakeholders to participate.

• Common technical environments enable a better flow,

especially if a frequent delivery approach shall be implemented.

Where applicable, cloud environments and common open-

source projects are ways going forward.

• In an agile development environment, it can be a great

advantage if also supplier management is more agile, i.e., more

Subcontracting context

requirements are especially

noticeable in low margin

domains with multiple suppliers.

(e.g. automotive)

Mindset:

Develop and document as if you

are leaving and will hand over to

someone else

ADDALOT WHITE PAPER

15

focused on cooperation and common goals than on

specification and follow up of detailed contracts. A more

cooperative approach requires mutual trust and may increase

the dependency to the suppliers but can make the overall

development process more efficient.

• Regular common retrospectives (lessons learned meetings) with

the supplier to continuously improve the cooperation. The

identified improvement activities can be included in the product

and sprint backlogs and often be handled in the same way as

other activities. The progress of the improvement activities

should be followed up in the common retrospectives.

• There are several posts on how to perform agile contracting,

here are some well described Best Practices

• BP #1: Separate Business Risk from Software Work

• BP #2: Define Scope at a High Level

• BP #3: Emphasize Delivery Process Not Deliverables

• BP #4: Define Acceptance at a High Level

• BP #5: Time and Materials, Not Fixed Price

• BP #6: Sharing the Gain and any Pain

• BP #7: Go Easy on Downside Protections

• BP #8: Contracts Do not Create Trust: People do

Hardware:

Succeeding with agile hardware development is an interesting topic –

but not in scope in this whitepaper. The focus in this section is to

describe how to handle the potential negative impact hardware has on

agile SW development.

• Ensure that any steering model that make sense for HW is not

enforced on SW, for example:

• Detailed requirements ready at initiation

• All functionality described at the time for ordering

production equipment

• Strict formalized test phases

• On the other hand, maximizing the freedom and agility of SW

development might not optimize the whole delivery. It is

important to strengthen system focus and understanding –

optimizing on the whole rather than HW/SW in isolation.

• During development and test, HW can be simulated in SW or

emulated using FPGA (programable integrated circuits)

prototypes. The development of the simulators and emulators

resembles normal SW development and can be integrated in an

agile SW development process.

• Invest in rigs – automated SW testing must be as independent

of HW progress as possible.

• Increase dialogue – establish regular synch,

• Understand consequences of HW shortage

• Do not assume, prepare for SW alternatives

file:///C:/Users/NicolasMartin-Vivald/NMV/M&S/whitepaper/addalot/AA/•%09https:/medium.com/telegraph-hill-software/8-dos-and-don-ts-of-agile-contracts-ea0641c4183a

ADDALOT WHITE PAPER

16

Process Capability models:

• Documentation handling is a large challenge from different

process capability models, expecting strategies, records, logs,

and evaluations.

• Formal document reviews:

o Most models expect that it shall be specified: who

should participate, review guidelines, written feedback,

clear decision of review, but not necessarily a physical

review meeting.

o Handling document review as code pull request can

make them more efficient.

1) Indicate specific changes 2) Simplify notetaking

3) Each reviewer needs to indicate if a meeting is needed

or if the author is expected to handle the comments

without a meeting 4) Review meetings can be skipped, if

not needed (most context requirements do not require

the review meeting, only that the relevant stakeholders

participate, and that the comments and decisions are

persistent).

• PCMs require clear scope/estimates. The solution is to balance

long term planning with short term planning. This typically

result in:

o Overall release planning

o Increment planning

o Sprint planning

• PCMs expect architecture/design with traceability. To make this

effective establish a tool chain where queries can be made to

indicate coverage and missing links. This way the effort for

traceability can be simplified.

• Traceability

o The traceability that is applied often e.g. traceability

between SW requirements and test cases is highly

meaningful and easy to access.

o Traceability that is seldom used does not be that easily

retrieved. E.g. “blame” will indicate all commits that

have impacted a specific file.

• The PCMs also require elaborate process management,

including descriptions, templates, instructions, tailoring

guidelines, etc. A working processes management will help to

ensure common understanding of the agile way of working but

the risk is that that it will be too detailed and consume a lot of

resources to maintain.

• Instead of first documenting a perfect theoretical PCM

compliant agile process and then trying to implement it, it is

usually a better strategy to build on the current ways of

working, i.e., to first document the current ways of working and

then gradually improve and document the real implemented

process towards PCM compliance and agility. This strategy will

help making the process documentation consistent with the

real ways of working and will probably also help avoiding

WARNING:

Beware of the paper tiger.

ADDALOT WHITE PAPER

17

unnecessarily detailed documentation.

• To manage the risk of “over documentation”, the focus must be

to secure that the documentation is not too detailed and is only

a part of making your work procedure stick. A more effective

way is to build the process into the templates/tool chain.

o Establish DoR and DoD for key work products like

(requirements, epics, …)

o Include control in the pull request (e.g., Unit test, Static

Code analysis, Review, Build and integration test)

o Quality gates in the integration & build pipeline

Safety/Cyber Security:

Several of the Safety and Cyber security aspects have been covered in

the other contexts above. Safety and Cyber security may require more

documentation and formality in their handling.

A related issue is how to carry out the safety/security assessment

during agile development. One strategy is to perform incremental

informal assessments in the sprints and a final formal assessment at

the end. The purpose of the incremental assessments is to give early

feedback on the safety/security related work. They can be informal and

do not need to fulfill all the requirements in the standards on how the

assessment should be performed. The purpose of the final assessment

at the end is to perform a complete formal assessment according to

the requirements in the safety/security standard. Because of the

incremental assessments in the sprints, hopefully, only few major

issues should be found in the final formal assessment.

A balancing act is how much of the Safety/Cyber Security specific work

that needs to be done upfront?

Doing e.g., a threat model analysis is more challenging in an iterative

approach. How often and how deep analysis is required? We cannot

wait until the final solution is defined but need to identify when an

iteration has impacted the model enough for revisiting the analysis.

An important aspect is who is doing safety/security-critical work? It is

sometimes done by safety/security managers/engineers in parallel

with the development projects (A process/safety/security team).

A more agile way is to make sure that it is done within the project.

That these additional people become part of the teams, even though

they focus on the adaptation. In the same way as testers in a

development team focus on tests. However, a central function is often

necessary to ensure adaptation by providing expertise and

coordination.

Open Source:

Addressing the context requirements from open source are mainly

adding some documentation and some additional procedures.

• Documentation (emails, read me files, etc.) needs to be

managed since OS communication require this for community

interaction (rather than live communication) and documentation

ADDALOT WHITE PAPER

18

needed to fulfil community license expectation

• Adding perspective to open source is not violating any context

requirements, it is just not expected.

• Adhering to OS roles is not large compromise. For a more

active OS participation clear roles and responsibilities need to

be defined related to the making commit decisions, propose

solutions and perform reviews.

• To make OS more resource effective, increased communication

is needed to ensure that community participants have a clear

view of roadmap.

• Successful active OS participation will also require

o development strategy that defines how the components

of the product will be developed in a Make-Buy-Share

strategy

o product ownership / contribution strategy

4.2. Apply agile principles

Even though your situation is complex with many context

requirements, e.g., large scale + HW/SW development + fulfillment of

ASPICE, Safety and Security, there are several agile principles that can

be applied for a more agile development model without impacting the

context requirements. This section will highlight several of the agile

principles that can be applied and help you to become more agile

independent of potential context requirements.

Customer focus - How do we ensure continuous dialogue with the

customer? Many times, you do not have the opportunity to have the

customer available. Instead an internal proxy is established, often

called “Product Owner”. To make a Product Owner a successful

customer representative, it is important they are exposed to customer

situation (review customer cases, site visits, demos, etc.). It can also be

recommendable NOT to make them a member of the development

team to highlight that they represent the customer, placing orders to

the team. The work products by the product owner, requirements, epic

descriptions, etc. shall be written with customer context.

• Why is it important for the customer?

• What is the customer problem?

• What would be the main benefit for the customer?

• How will it be used by the customer?

• Who are the “personas” that will use the solution?

Another important lesson is that to cover complex systems, the

Product Owner is rather a function than an individual. So, you need

several different people to be able to represent the full product.

To ensure prompt customer feedback, it is important to define a

"Minimum Viable Product" (MVP), i.e. the minimal product that is still

REMEMBER:

Context requirements can be

meaningful --- but you will

become less agile

The 12 agile principles have

been roughly followed, with some

minor own interpretations

https://agilemanifesto.org/principles.html

ADDALOT WHITE PAPER

19

large enough to get customer feedback. It may be for limited use but

still provide real user experiences. The MVP approach also help to

maintain the customer focus. In some contexts, the MVP approach is

not so suitable, for supplier that is expected to deliver a specific scope

it might be difficult to split/cut the delivery. Defining an MVP can still

provide value from enabling feedback (at least internally) and enable to

focus on a working product.

Focus on working software is practice in it-self. There are different

ways to strengthen this focus. To continuously run demos on different

levels is a good start. To make it effective, technical demos can be run

within the team or between teams to show progress after sprints. On

higher levels more customer-oriented demos should be run to show

what the customer can do with the implemented functionality. Metrics

that visualize the progress of working software can also contribute.

Instead of following up on hours or passed milestones, % of

implemented (working!) product features are more relevant. But maybe

most important is to drive the development in small steps that are

integrated, tested, and potentially delivered.

Continuous deployment is a concept that does not work easily in all

contexts, e.g., for safety development since it requires specific tests

and documentation that could be very time consuming. Also products

with HW are not always suitable for continuous deployment. But

continuous integration, the concept of implementing and testing

small chunks of work is relevant in most contexts. If the small chunks

can be established as verticals, providing customer benefit, then it will

support testing in steps, enabling relevant feedback, build internal

understanding, supporting the concept to perform demos showing

customer benefit and visualize quality and status. Continuous

delivery can be a sweet spot for many organizations. It requires that if

the development of the chunks should be ready for delivery, potentially

some of the formal steps required by some of the context

requirements might remain to be done. This forces the organization to

mindset that what get started should be driven to a (almost) ready

state and not postpone relevant documentation and other

responsibilities.

Prioritization - a key aspect of agile development is to achieve a

continuous prioritization of the work. The focus is to achieve

simplicity, the art of maximizing the amount of work not done. The

Product Owner function must balance the prioritization of customer

benefit and system understanding with information of cost,

implementation order, and available skills. This priority then needs to

be clear for the entire project. From a safety critical perspective,

content that is part of the safety concept must be prioritized early

ADDALOT WHITE PAPER

20

because it needs to be part of the delivery and cannot be scoped out.

Planning - agile work is both incremental (development in steps) and

iterative (stepwise refinement). To achieve this, planning is required.

Both to get the overall plan in place and then to establish a model for

the continuous planning. For safety-critical development, scope

preparation and initial planning needs to be more extensive as one

needs to establish more structures. The continuous planning needs to

handle:

• Control of which requirements/features are specified and ready

to be developed and which need more investigation.

• Refinement of large tasks so that they do not run across

multiple sprints.

• Dependencies and synchronization between teams.

Team set up and support – to minimize handovers and to make the

development teams focused on customer value cross-functional

teams are preferable to functional/component teams. Focus need to

be on “T-shaped” competence profiles with the ability to collaborate

across disciplines with one (or several) in depth expertise. With cross

functional team there are risks:

• implementing too large teams ➔ keep them around 6-8 people

• have key people part of multiple teams ➔ one team per person

• continuous rearrangement ➔ Keep teams stable, not forever

but enough to allow continuity

In addition to competence mix it is important to establish trust and

team empowerment by staying away from micromanagement. The

team must have clear responsibilities and provided with an

environment where motivation can blossom. This includes letting

teams make technical decisions and sprint planning but also providing

the needed information and qualitative input (e.g. requirements)

Figure 2: The shift in team set up and management

ADDALOT WHITE PAPER

21

To be able to maintain the efficiency of a development organization a

sustainable pace must be established. The mistake is burning

ourselves out in completing all the work that the team has forecasted

for the sprint. It is good to enable predictability but having flexibility is

equally important in complex work. Unsustainable pace leads to poor

quality and lowers morale.

Good practices for sustainable pace include:

• Daily check in, requiring teams to split up work in digestible

pieces

• Allow time for increment and sprint planning and perform

reviews to enable learning and improve estimation.

• Product owners and scrum masters shall act as gate keepers

reduce the noise from other stakeholders to avoid squeezing in

additional unplanned work during an ongoing sprint.

• Focus on work product flow rather than staff utilization

Changes – Agile is embracing changes. A workflow where changes can

be evaluated and included in a structured way is needed. One way is to

handle changes at sprint review and demo. It is a natural moment to

open up for feedback and changes. It is important to clarify that

additional changes to working functionality will impact yet unrealized

functionality. Determining whether it is better with fewer really good

features, or many just-working features is a business decision. It

should not be a decision for a development team (especially if the

development team has limited overall product under-standing, which is

the case for many complex safety-critical products). Another important

aspect is to have different control levels for change, e.g. more control

if the change is impacting working functionality and less if it is

impacting the scope in the backlog. Internal changes (design and code

refactoring) should also have their control. Refactoring should in

general be encouraged but in a managed way, see below.

Agile development principles – Some of the agile development

principles can be introduced without impact on the context

requirements. Refactoring and Test first are good examples.

There is one agile practice that can be more difficult to implement

when the development in done short sprints with constant focus on

new development and fixed bugs. From an agile perspective there

should be a continuous attention to technical excellence and good

design. Paying continuous attention to refactoring and reducing

technical debt helps obtaining maintainable and readable code and

scalable design. But how to make it happen? It must be part of the

team’s expectation not only to develop new features but to address

technical dept. Technical dept needs to be identified/measured

(complexity, cohesion, coupling, duplication, test coverage, code

Sustainable phase is

a winning concept!

ADDALOT WHITE PAPER

22

smells). A percentage of the increment should be dedicated to

refactoring, SAFe has one sprint (Innovation and Planning Iteration)

dedicated. Unfortunately, it is often used as a buffer for the functional

development and refactoring is often neglected.

Face to Face meetings are a natural part for small development teams.

But for large scale and distributed development, face to face meeting

risk to be replaced by written information. The solution is to identify

key points in the development where a meeting adds substantial value.

Agile ceremonies for the single team, e.g. planning, daily meetings,

review and retro are typically performed but the challenge are cross

team related / hand over meetings. Increment planning similar to

SAFe’s PI planning or Setting up Teams of Teams to ensure information

is transparent are good examples. When implementing an epic which

involves several teams a good practice is to introduce an epic start up

meeting to ensure that all stakeholders have the same information and

agree on their agreed commitments.

Continuous learning, along with continuous improvement, is an

important agile principle. Establishing retrospectives that improve the

team's working methods are important. Daring change and

improvement is central to high performance teams and projects. It

requires that the organization allow failures as long as we do it quickly

and learn from it!

7. Conclusion

To establish your adapted development model, you first need good

understanding to fulfil the different context requirements in an agile

way, then you need to consider what you can pick from different agile

methodologies. There is no silver bullet, you need select nuggets

adding different pieces to the development model puzzle.

Figure 3: Overview of how to establish an effective development model.

ADDALOT WHITE PAPER

23

One of the largest challenges for companies with many context

requirements is that they abandon agile ways of working when they

see that they cannot apply agile by the book.

The key take away is that your context is likely pretty unique and

deserve a thought through approach. Your decided way of working can

be more or less agile, the goal should be to make it agile as possible

but still meeting the context requirements. And finally, the likelihood

that there is a pre-defined model perfect for you is very small…

ADDALOT WHITE PAPER

24

About Addalot

Background

Addalot Consulting has over 30 years of experience in process

improvement within the field of systems and software. The company

was founded in 1989 as Q-Labs, a spin-off from Ericsson, and became

a leader in Europe for services related to optimizing software

development companies. Q-Labs was acquired by DNV in 2006. The

operations were transferred in 2011 to the newly formed company

Addalot Consulting. Addalot helps organizations improve results and

reduce risks by streamlining their software development processes.

Approach

Our fundamental approach is that the process, the prevailing way of

working, strongly affects both the quality of the products being

developed and the lead time for development work. Many companies

focus on results and wish for improvements (faster, cheaper, better

quality) without considering which capabilities need to be improved for

this to be possible.

Addalot’s expertise:

Process Capability – Faster and more efficient and reliable processes

Adapted Agile – Succeeding with agile in complex environments

Industrial Open Source – Enabling delivery and business opportunities

Functional Safety – Handling of safety critical software (lita på)

Secure Development – Identify and address vulnerabilities proactively

Customers

Addalot helps both large and small organizations in a variety of industries:

ABB, Actia, Advenica, Alfalalval, Ansaldo, Assa Abloy, Atlas Copco, Autoliv,

Axis, BAE Systems, Baxter, BMW, Boing, Bombardier, BorgWarner, Bosch,

CabinAir, Combitech, DB Schenker, Delaval, Diadrom, EADS, Elekta, Embitel,

Ericsson, Fingerprints, FMC, FMV, GM, Handelsbanken, Ikea, Ikano, Kockums,

Kongsberg, Lawson, Littlefuse, Maquet, News, Nokia, Palette, PEAB, Playtech,

Postnord, Point, Qualcomm, Qlik, Readsoft, Region Skåne, Saab, Scania,

Schneider, SEB, Simcorp, Sony, Stoneridge, T-Engineering, Telenor, Telia,

Terma, Thales, Veoneer, Verisure, Visma, Visteon, Volvo.

Contact

We are active in Göteborg, Malmö and Stockholm, see web for contact.

Efficient way of working

lead to better software

www.addalot.se

http://www.addalot.se/

